

The Right Drug, The Right Patient, the Right Time!

Robert L. Barkin, PharmD

Disclosures

■ None

Learning Objectives

- Explain an index of suspicion regarding the potential of health care prescribers' errors
- Recognize a heightened appreciation of adverse events experienced by the patient
- Differentiate appropriate standards of care and system performance failures
- Identify the pharmacokinetics of pain medication, the pharmacology of pain medications and the various pathophysiological aspects of an elderly patient which together influence prescribing
- Distinguish select opioid pharmacokinetics and selected opioid pharmacology

The Right Clinical Based Concepts Utilized in Patient-Specific, Patient-Centered, Patient-Focused, Personalized Care

- Right patient
- Right diagnosis
- Right medications
- Right dose
- Right laboratory indices
- Right tests (RFT, LFT, EKG, Hemato, radiology., etc.)
- Right location
- Right route (anatomic location)
- Right administration specifics
- Right time (hours)
- Right dosage forms
- Right CMP or current profile
- Right monitoring parameters

- Right information
- Right patient/advocate understanding
- Right dispensing
- Right communication
- Right generic equivalent
- Right interaction evaluation (food, OTC drugs, Rx drugs, phyto pharmacueticals)
- Right schedules
- Right need(s)
- Right analysis of challenges (physical, emotional, disability)
- Right to document allergies and/or side effects

			Clin. Geriatr Med 21 (2005) 465-490
(4)			
		Considerations in Geriatric Patient	
	Parameter Absorption	• GI transit time ↓ • Bowel dysmotility ↓	Common Disease Effects Disorders and pharmacotherapy altering gastric pH may reduce drug absorption; surgically altered anatomy may affect absorption, RnY, SLEVE, gastrectomy, ostomy
	Distribution	↑ fat-to-lean body wt. ratio → in ↑ ¼d for lipophilic drugs and ↓ ¼d for hydrophilic drugs ↓ serum albumin results in ↑ drug free fraction	Aging and obesity may result in ≥T1/2 β † toxicity with ↑ PPB pharmacotherapy
	Metabolism	Oxidation (variable and may	Hepatic events (pathologic) may negatively <u>effect</u> oxidation (conjugation preserved)
	Excretion	 GFR <u>Clcr</u>↓ with age, resulting in ↓excretion; ↓ in renal clearance will ≥ effects of active and other metabolites 	 Renal disease → to drug s/e, ADR's and toxicity (<u>ClCr</u> ≤ 30), presence of both functioning kidneys
	Compliance	Consider diminished esp. with polypharmacy	Therapeutic end points not achieved
	Interaction of Multiple Drugs (CYP 450)	• $\ \ \downarrow$ or \uparrow in serum levels, AUC, CL, $T_{1/2}\beta$	Genetic polymorphism CYP inhibition, induction, competitive inhibition
	Plasma Protein Binding (esp. albumin)	↑ serum levels of unbound active drug	CMP, malnutrition

Pharmacology of Opioids

Table 3.	Classification	of	opioids.

Agonists	Antagonists	Agonist/antagonists	Partial agonists
Morphine Codeine Oxycodone Pethidine Diamorphine Hydromorphone Levorphanol Methadone Fentanyl Sufentanyl Tramadol Tapedolol	Naloxone Naltrexone Nalmefene Diprenorphine	Nalorphine Pentazocine Nalbuphine Butorphanol Dezocine	Meptazinol Buprenorphine

Table 4. Approximate conversion chart for "equianalgesic" initial doses of opioids.

Drug	Route	Equianalgesic Dose
Morphine	Parenteral PO	10 mg 30 mg (chronic) 60 mg (acute)
Codeine	PO	200 mg
Fentanyl	Transdermal	12.6 to 25 mcg/hr
Hydrocodone	PO	20-30 mg
Hydromorphone	Parenteral PO	1.3 to 1.5 mg 7.5 mg
Meperidine	Parenteral PO	75 mg 300 mg
Methadone	Parenteral PO	Variable drug titration
Oxycodone	PO	20-30 mg
Oxymorphone	PO Parenteral	10 mg 1 mg
Tramadol	PO	undetermined
Buprenorphine	Parenteral	0.3 mg
Tapentadol	PO	100-150 mg

Opioid PG Risk Factor		CYP Substrate	CYP Inducer	CYP Inhibitor
Alfentanil	С	3A4		
Buprenorphine	С	3A4 , 2B7, Phase II		2D6, 3A4
Butorphanol	C/D			2D6
Codeine	C/D	2D6, 3A4		2D6
Dihydrocodeine	B/D	2D6		
Fentanyl	C/D	3A4		3A4
Hydrocodone	C/D	Phase II (40%) 3A4 (60%)		
Hydromorphone	C/D	Phase II glucuronidation conjugated 6-OH minor metabolites (6HG<3HG)		
Levorphanol	B/D	Hepatic Phase II		
Meperidine	C/D	2D6, 2C19, 3A4		
Methadone	C/D	3A4, 2C9, 2C19, 2D6 ,2B6		2D6, 3A4
Morphine	C/D	Phase II, 2D6 (minor)		
Nalbuphine	B/D	Hepatic		
Oxycodone	B/D	2D6 , 3A4		
Oxymorphone	С	Phase II glucuronidation		
Pentazocine	C/D	Oxidation, glucuronidation		
Propoxyphene	C/D	2D6	2D6	
Remifentanyl	С	Unknown CYP450 nonspecific esterases (blood) and tissue		2D6
Sufentanil	С	3A4		
Tramadol	С	2B6, 2D6, 3A4 Phase II		
Tapentadol	С	85% Phase II; 15% CYP450 (13% 2C9, 2C19, 2% 2D6)		

References

- Manns MP, Jaeckel E, Taubert R. Budesonide in Autoimmune Hepatitis: the Right Drug at the Right Time for the Right Patient. Clin Gastroenterol Hepatol. 2018; 16(2): 1867-189.
- Romao VC, Vital EM, Fonseca JE, Buch MH. Right Drug, Right Patient, right time: Aspiration or future promise for biologics in rheumatoid arthritis? Arthritis Res Ther. 2017; 19(1): 239.
- Vitale V, Ricci Z, et al. Steroids and pediatric cardiac surgery: the right drug, at the right time, for the right patient. Pediatr Crit Care Med. 2010; 11(6): 769-70.
- Lemire F. The right drug for the right patient: caring for our patients while minimizing prescription drug misuse. Can Fam Physician. 2013: 59(6): 708
- Grissinger M. The Five rights: A destination without a map. Phar. Therap. 35(10): 542

