Diabetic Peripheral Neuropathic Pain: Evaluating Treatment Options

Ramon L. Cuevas-Trisan, MD

Disclosures

- Speakers Bureau/Honoraria: Allergan, Ipsen
Learning Objectives

- Discuss practical approaches to the evaluation and management of diabetic peripheral neuropathy pain
- Review the medical evidence behind recommended pharmacological treatments for pain in DPN
- Compare older and newer guidelines for pharmacological management of painful DPN

“Absence of Evidence is Not Evidence of Absence”

Or is it....
DPN Pain

- Neuropathic pain: pain caused by a lesion or disease of the somatosensory nervous system
- Often presents with pain in area of sensory loss, spontaneous pain, and evoked pain (hyperalgnesia, allodynia)
- DPN is a common long-term complication of DM—can affect function and QOL
- Most common type: distal symmetric sensorimotor
- Pain is estimated to affect 30%-50% of diabetics (out of estimated 29.1M in the US by the CDC)

DPN Pain Management

- First widely accepted step: optimize glycemic control (despite clear lack of evidence and even some contradictory results)
- Second: stepwise pharmacological approaches and algorithms generally used; comparative effectiveness is unclear partially due to scarcity of head-to-head trials
Evaluation/Diagnosis

- Diagnosis of DPN is clinical
- Based on hx of neuropathic pain and confirmatory examination findings establishing deficits associated with neuropathy
 - Decreased or altered sensation
 - Monofilament, vibration, Romberg
 - Depressed MSRs, atrophy

Evaluation/Diagnosis (cont’d)

- Intermittent or continuous symptoms of pain described as burning, stabbing, tingling, numb, hot, cold, or itching in a distal-to-proximal 'stocking → glove' distribution
- Pain often symmetrical/worsens at night
Evaluation/Diagnosis (cont’d)

- Glycemic control not the only factor
- Components of MetS may be potential risk factors since these CV risk factors cluster with hyperglycemia
- Obese individuals (even those w/o DM or pre-diabetes) have a higher prevalence of neuropathy than lean individuals; they also have higher pain scores and lower QOL\(^1\)
- No such effect for other MetS components\(^1\)

\(^1\)Callaghan, et al. JAMA Neurol 2016

Adjuvants/Co-Analgesics

- Any medication with analgesic properties but with a primary indication other than analgesia
 - Includes various medication classes
- May be used alone or in combination with opioids or other analgesics; DPN pain mostly managed with adjuvants

Portenoy RK and McCaffery M. In: Pain Clinical Manual, 2nd ed. 1999
Portenoy RK. In: Oxford textbook of palliative Medicine, 2nd ed. 1998
Adjuvant Analgesics

- Antidepressants
- Anticonvulsants
- Bisphosphonates
- Corticosteroids
- Local anesthetics
- Muscle relaxants
- Neuroleptics
- NMDA antagonists
- Topical agents
- Others

Choosing Considerations

- Polypharmacy issues
 - Additive adverse effects
 - Dual benefits
 - Medical comorbidities

- A call for patience…
 - Often require multiple dose titrations
 - May take days to weeks to achieve adequate response
Clinical Guidelines

- IASP—algorithm for neuropathic pain treatment
- AANEM, AAN, and AAPM&R—guidelines for management of painful diabetic neuropathy
- WIP systematic review and meta-analysis
- ACP umbrella systematic review
- AAN systematic review

IASP Algorithm

- Not specific to DPN
- Used NNT and NNH paradigm

- Lowest NNT → Highest NNT

- TCAs < CMZ < DXMP < opioids < gabapentin/< SNRIs
IASP Algorithm (cont’d)

<table>
<thead>
<tr>
<th>Agent</th>
<th>NNT</th>
<th>NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>2.1</td>
<td>14.7</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>2.3</td>
<td>21.7</td>
</tr>
<tr>
<td>Dextromethorphan</td>
<td>2.5</td>
<td>8.8</td>
</tr>
<tr>
<td>Opioids</td>
<td>2.6</td>
<td>17.1</td>
</tr>
<tr>
<td>Tramadol</td>
<td>3.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Gabapentin/Pregabalin</td>
<td>4.6</td>
<td>17.8</td>
</tr>
<tr>
<td>SNRI</td>
<td>5.5</td>
<td>nd</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>11</td>
<td>11.5</td>
</tr>
</tbody>
</table>

2011 Clinical Guidelines Recommendations

- **Level A evidence:**
 - Pregabalin
- **Level B evidence:**
 - Gabapentin
 - Sodium valproate
 - Venlafaxine, duloxetine
 - Amitriptyline
 - Dextromethorphan
 - Morphine & oxycodone
 - Tramadol
 - Capsaicin 0.075%
 - Isosorbide dinitrate spray
 - Electrical stimulation

AANEM, AAN and AAPM&R
2011 Clinical Guidelines Recommendations

- Not recommended:
 - Oxcarbazepine
 - Lamotrigine
 - Lacosamide
 - Clonidine
 - Mexiletine
 - Pentoxifylline
 - Physical agents
 - Magnetic fields
 - Low-intensity laser
 - Reiki therapy

*AANEM, AAN and AAPM&R

Rehabilitation Interventions

- Increase stability and prevent falls
- Adaptive equipment to improve function, and QOL when disease symptoms progress
- May include splinting
Exercise

- Strengthening exercises moderately improve muscle strength in people with PN
- May reduce pain and help control hyperglycemia
- Should include: aerobic, flexibility, balance, and strength training

Clinical Guidelines

2014 ACP guidelines recommendations
- Network meta-analysis combining direct and indirect comparisons supports short-term effectiveness of:
 - Carbamazepine
 - Venlafaxine
 - Duloxetine
 - Amitriptyline
- As a group, SNRIs had a greater effect on pain than anticonvulsants and opioids
Clinical Guidelines (cont’d)

2014 ACP guidelines recommendations
- Patients receiving TCAs, SNRIs, and most anticonvulsants frequently reported somnolence and dizziness
- Xerostomia—most common anticholinergic effect of TCAs
- Nausea, constipation, and dyspepsia were prevalent among those using SNRIs
- Limited data about effects beyond 3 months
- Evidence is scant, mostly indirect, and often derived from brief trials with unclear or high risk for bias

Clinical Guidelines (cont’d)

New in the latest guidelines (AAN 2017):
- NOT effective
 - Gabapentin (same as 2014; different than 2011)
 - Opioids (different than 2011)
 - Dextromethorphan (different than 2011)
 - Capsaicin (different than 2011)
- Effective
 - Oxcarbazepine (different from 2011)
 - Tapentadol (new)
 - Botulinum toxin (new)

All with low SOE
Clinical Guidelines (cont’d)

- Confirmed again as effective:
 - Moderate SOE
 - Duloxetine
 - Venlafaxine
 - Low SOE
 - Pregabalin
 - TCAs
 - Tramadol

FDA Approval

- Duloxetine and pregabalin were approved for treatment of DPN pain in 2004
- Tapentadol ER in 2012—when opioid analgesia is required ATC over an extended period of time and alternative Tx options are inadequate
Antidepressants

- Analgesic activity relates to their ability to block the reuptake of serotonin and NE
 - Involved in modulation of spinal pain pathways

- Analgesia is not typically dependent on antidepressant activity
 - Onset of action may differ

- Multipurpose analgesics
 - Analgesic in a variety of chronic pain syndromes

Antidepressants (cont’d)

- TCAs
 - Tertiary amines (amitriptyline, imipramine)
 - Secondary amines (nortriptyline, desipramine)

- SSRIs
 - Fluoxetine, paroxetine, citalopram

- SNRIs
 - Duloxetine, venlafaxine
TCAs

- Considered first line therapy for painful DPN\(^1\)
 - Amitriptyline most thoroughly studied
 - Consider secondary amines for those unable to tolerate
- Extensively studied in numerous pain states
- Analgesic effect occurs early
 - Occurs in the absence of depression\(^2,3\)

Start low and go slow.....

\(^1\) Lynch J Psychiatry Neurosci 2001 \(^2\) Onghena and Houdenhove. Pain 1999

Venlafaxine

- Inhibit reuptake of norepinephrine and serotonin
 - Also dopamine
 - Less anticholinergic effects (dry mouth, constipation)
 - Similar to TCA
- Effective dose: 75-225 mg/day (BID/TID dosing)
- Side effects
 - Nausea, somnolence, dizziness, constipation, dyspepsia, sexual dysfunction
- Precautions/drug interactions
 - Caution in hypertension
 - MAOIs, TCAs, SSRIs, tramadol
Duloxetine

- Balanced and selective serotonin and norepinephrine reuptake inhibitor (SNRI)
- 60 mg QD; rarely may need 120 mg
- T\(^{1/2}\): 12 hrs; but no advantage of BID dose
- Start 30 mg x 1 wk; then increase to 60 mg (easy dosing schedule)
- Nausea is most significant S/E
- Drug interactions
 - TCAs, SSRIs, tramadol

Anticonvulsants
Gabapentin

- Considered by many 1st-line for neuropathic pain of many types
 - FDA approved for postherpetic neuralgia (’04)
- Level 1 evidence
 - Postherpetic neuralgia¹
 - Diabetic neuropathy² (not anymore…….)

¹ Rowbotham, et al. JAMA 1998
² Backonja, et al. JAMA 1998

Gabapentin vs Amitriptyline

- Randomized, double-blind, crossover study (n=25) patients with DPN
 - Gabapentin 900-1800 mg/day vs amitriptyline 25-75 mg/day
- Results:
 - Reduction in pain: greater with amitriptyline but no significant difference (p = 0.26)
 - Similar incidence of side effects
 - More weight gain with amitriptyline

Gabapentin

- Initial dose 300 mg/day—300 mg TID
- Increase by 300 mg/day every 2-7 days
- Usual effective dose 1800-3600 mg/day
 - Given 3 times daily (TID)
 - Sometimes higher doses required

Pregabalin

- GABA analogue:
 - Modulates stimulus-dependent Ca++ influx at nerve terminals
 - Increases extracellular [GABA] in the CNS
- Dosed BID-TID (up to 300 mg/day)
- Increased bioavailability (and faster titration) vs gabapentin
- Schedule V
Oxcarbazepine

- A keto-analog of carbamazepine
 - Shares the same mechanism of action
- Comparable analgesic efficacy to carbamazepine\(^1,2\)
 - OCBZ 900-1200 mg/day ~ CBZ 400-1200 mg/day
- Better safety and tolerability profile compared with carbamazepine\(^2\)
 - Dizziness, nausea, HA, drowsiness, ataxia, diplopia, fatigue, nervousness, LFTs, hyponatremia
 - No reported association with aplastic anemia

\(^1\) Lindstrom P. *Eur Neurol* 1987
\(^2\) Beydoun A, et al. (abstract) *AAN*, 54th annual meeting 2002
\(^3\) Zhou et al. Cochrane Database Systematic Reviews 2013

Oxcarbazepine (cont’d)

- Sodium levels should be checked at baseline and frequently
 - Reported hyponatremic coma
 - Elderly, medically ill may be at greater risk
- Initial dose 150-300 mg/day
 - Increase by 150 mg every 3 days
- Usual effective dose 900-1800 mg/day
 - Dosed BID
Opioids

Tramadol

- MOA: binding of the parent drug and its metabolite to mu-opioid receptors, and weak inhibition of both NE and serotonin reuptake
- Low SOE but considered effective in DPN

Harati et al. Neurology 1998
Harati et al. J Diabetes Complications 2000
Tapentadol ER

- Synthetic μ-opioid agonist and norepinephrine reuptake inhibitor
- Starting dose: 50 mg BID
- Titrated to adequate analgesia with dose increases of 50 mg BID q 3 days to an effective dosing range of 100 to 250 mg BID
- Generally GI S/Es less severe than those of opioids

Emerging Treatments for Neuropathic Pain

- Botulinum toxins
 - Extensive publications on multiple neurogenic inflammatory states; likely lots of publication and other biases
 - 2 RCTs of DPN pain (low n); both type A
 - “Relatively” expensive
 - Painful application

Yuan, et al. Neurology 2009
Emerging Treatments for Neuropathic Pain (cont’d)

- Proposed pathogenetic treatments
 - α-lipoic acid (decreases reactive oxygen formation)
 - Benfotiamine (prevents vascular damage in diabetes)
 - Aldose-reductase inhibitors (reduces flux through the polyol pathway)
 - Cannabinoids

Final Recommendations

- Depend greatly on patient’s specific comorbidities/situation and cost
- TCAs/pregabalin/duloxetine/venlafaxine
 - Could also consider gabapentin/oxcarbazepine
 - Tapentadol/tramadol—later in select cases
 - Consider BTX for intractable cases
Conclusions

- Choose medications carefully
 - Consider comorbidities

- Have realistic expectations
 - Slow onset, need to titrate, toxicities, long-term use
 - Counsel patients regarding expectations and potential side effects

- Be persistent
 - Titrate doses to efficacy or toxicity

Conclusions (cont’d)

- Consider multiple agents
 - May allow lower doses of each
 - Toxicity and compliance issues
 - Concomitantly vs successively....
Thanks!

ramon.cuevas-trisan@va.gov