

Diabetic Peripheral Neuropathic Pain: Evaluating Treatment Options

Ramon L. Cuevas-Trisan, MD

Disclosures

■ Speakers Bureau/Honoraria: Allergan, Ipsen

Learning Objectives

- Discuss practical approaches to the evaluation and management of diabetic peripheral neuropathy pain
- Review the medical evidence behind recommended pharmacological treatments for pain in DPN
- Compare older and newer guidelines for pharmacological management of painful DPN

"Absence of Evidence is Not Evidence of Absence"

Or is it....

DPN Pain

- Neuropathic pain: pain caused by a lesion or disease of the somatosensory nervous system
- Often presents with pain in area of sensory loss, spontaneous pain, and evoked pain (hyperalgesia, allodynia)
- DPN is a common long-term complication of DM—can affect function and QOL
- Most common type: distal symmetric sensorimotor
- Pain is estimated to affect 30%-50% of diabetics (out of estimated 29.1M in the US by the CDC)

DPN Pain Management

- First widely accepted step: optimize glycemic control (despite clear lack of evidence and even some contradictory results)
- Second: stepwise pharmacological approaches and algorithms generally used; comparative effectiveness is unclear partially due to scarcity of head-to-head trials

Evaluation/Diagnosis

- Diagnosis of DPN is clinical
- Based on hx of neuropathic pain and confirmatory examination findings establishing deficits associated with neuropathy
 - -Decreased or altered sensation
 - · Monofilament, vibration, Romberg
 - -Depressed MSRs, atrophy

Evaluation/Diagnosis (cont'd)

- Intermittent or continuous symptoms of pain described as burning, stabbing, tingling, numb, hot, cold, or itching in a distal-to-proximal 'stocking →glove' distribution
- Pain often symmetrical/worsens at night

Evaluation/Diagnosis (cont'd)

- Glycemic control not the only factor
- Components of MetS may be potential risk factors since these CV risk factors cluster with hyperglycemia
- Obese individuals (even those w/o DM or pre-diabetes) have a higher prevalence of neuropathy than lean individuals; they also have higher pain scores and lower QOL¹
- No such effect for other MetS components¹

¹Callaghan, et al. JAMA Neurol 2016

Adjuvants/Co-Analgesics

- Any medication with analgesic properties but with a primary indication other than analgesia
 - -Includes various medication classes
- May be used alone or in combination with opioids or other analgesics; DPN pain mostly managed with adjuvants

Portenoy RK and McCaffery M. In: Pain Clinical Manual, 2^{nd} ed. 1999 Portenoy RK. In: Oxford textbook of palliative Medicine, 2^{nd} ed. 1998

Adjuvant Analgesics

- Antidepressants
- Anticonvulsants
- Bisphosphonates
- Corticosteroids
- Local anesthetics

- · Muscle relaxants
- Neuroleptics
- NMDA antagonists
- Topical agents
- Others

Choosing Considerations

- ■Polypharmacy issues
 - -Additive adverse effects
 - -Dual benefits
 - -Medical comorbidities
- A call for patience...
 - -Often require multiple dose titrations
 - -May take days to weeks to achieve adequate response

Clinical Guidelines

- IASP—algorithm for neuropathic pain treatment¹
- AANEM, AAN, and AAPM&R guidelines for management of painful diabetic neuropathy²
- ■WIP systematic review and meta-analysis³
- ACP umbrella systematic review⁴
- ■AAN systematic review⁵

¹Finnerup NB, et al. Pain 2005

²Bril, et al. Muscle & Nerve 2011

³Snedecor, et al. Pain Practice 2013

⁴Griebeler, et al. Ann Int Med 2014

⁵Waldfogel, et al. Neurology 2017

IASP Algorithm

- Not specific to DPN
- Used NNT and NNH paradigm
- ■Lowest NNT ————> Highest NNT
- TCAs < CMZ < DXMP < opioids < gabapentin/< SNRIs

IASP Algorithm (cont'd)

<u>Agent</u>	<u>NNT</u>	<u>NNH</u>
TCA	2.1	14.7
Carbamazepine	2.3	21.7
Dextromethorphan	2.5	8.8
Opioids	2.6	17.1
Tramadol	3.5	9.0
Gabapentin/Pregabalin	4.6	17.8
SNRI	5.5	nd
Capsaicin	11	11.5

2011 Clinical Guidelines Recommendations

- Level A evidence:
 - Pregabalin
- Level B evidence:
 - Gabapentin
 - Sodium valproate
 - Venlafaxine, duloxetine
 - Amitriptyline
 - Dextromethorphan
 - Morphine & oxycodone
 - $-\, Tramadol$
 - Capsaicin 0.075%
 - Isosorbide dinitrate spray
 - Electrical stimulation

*AANEM, AAN and AAPM&R

2011 Clinical Guidelines Recommendations

- Not recommended:
 - -Oxcarbazepine
 - -Lamotrigine
 - -Lacosamide
 - -Clonidine
 - -Mexiletine
 - -Pentoxifylline
 - -Physical agents
 - -Magnetic fields
 - Magnetic fields
 - -Low-intensity laser
 - Reiki therapy

*AANEM, AAN and AAPM&R

Rehabilitation Interventions

- Increase stability and prevent falls
- Adaptive equipment to improve function, and QOL when disease symptoms progress
- May include splinting

Exercise

- Strengthening exercises moderately improve muscle strength in people with PN
- May reduce pain and help control hyperglycemia
- Should include: aerobic, flexibility, balance, and strength training

Clinical Guidelines

2014 ACP guidelines recommendations

- Network meta-analysis combining direct and indirect comparisons supports short-term effectiveness of:
 - -Carbamazepine
 - -Venlafaxine
 - -Duloxetine
 - -Amitriptyline
- As a group, SNRIs had a greater effect on pain than anticonvulsants and opioids

Clinical Guidelines (cont'd)

2014 ACP guidelines recommendations

- Patients receiving TCAs, SNRIs, and most anticonvulsants frequently reported somnolence and dizziness
- Xerostomia—most common anticholinergic effect of TCAs
- Nausea, constipation, and dyspepsia were prevalent among those using SNRIs
- Limited data about effects beyond 3 months
- Evidence is scant, mostly indirect, and often derived from brief trials with unclear or high risk for bias

Clinical Guidelines (cont'd)

New in the latest guidelines (AAN 2017):

- NOT effective
 - -Gabapentin (same as 2014; different than 2011)
 - -Opioids (different than 2011)
 - -Dextromethorphan (different than 2011)
 - -Capsaicin (different than 2011)
- Effective
 - -Oxcarbazepine (different from 2011)
 - -Tapentadol (new)
 - -Botulinum toxin (new)

^{**}All with low SOE

Clinical Guidelines (cont'd)

- Confirmed again as effective:
 - -Moderate SOE
 - Duloxetine
 - Venlafaxine
 - -Low SOE
 - Pregabalin
 - TCAs
 - Tramadol

FDA Approval

- Duloxetine and pregabalin were approved for treatment of DPN pain in 2004
- Tapentadol ER in 2012—when opioid analgesia is required ATC over an extended period of time and alternative Tx options are inadequate

Antidepressants

- Analgesic activity relates to their ability to block the reuptake of serotonin and NE
 - -Involved in modulation of spinal pain pathways
- Analgesia is not typically dependent on antidepressant activity
 - -Onset of action may differ
- Multipurpose analgesics
 - -Analgesic in a variety of chronic pain syndromes

Antidepressants (cont'd)

- ■TCAs
 - -Tertiary amines (amitriptyline, imipramine)
 - -Secondary amines (nortriptyline, desipramine)
- ■SSRIs
 - -Fluoxetine, paroxetine, citalopram
- ■SNRIs
 - -Duloxetine, venlafaxine

TCAs

- Considered first line therapy for painful DPN¹
 - -Amitriptyline most thoroughly studied
 - Consider secondary amines for those unable to tolerate
- Extensively studied in numerous pain states
- Analgesic effect occurs early
 - -Occurs in the absence of depression^{2,3}

Start low and go slow.....

I Lynch J Psychiatry Neurosci 2001 2 Onghena and Houdenhove. Pain 1999 3 Max, et al. NEJM 19923 Leijon and Boivie. Pain 1989

Venlafaxine

- Inhibit reuptake of norepinephrine and serotonin
 - -Also dopamine
 - -Less anticholinergic effects (dry mouth, constipation)
 - -Similar to TCA
- Effective dose: 75-225 mg/day (BID/TID dosing)
- Side effects
 - -Nausea, somnolence, dizziness, constipation, dyspepsia, sexual dysfunction
- Precautions/drug interactions
 - -Caution in hypertension
 - -MAOIs, TCAs, SSRIs, tramadol

Duloxetine

- Balanced and selective serotonin and norepinephrine reuptake inhibitor (SNRI)
- ■60 mg QD; rarely may need 120 mg
- T^{1/2}: 12 hrs; but no advantage of BID dose
- Start 30 mg x 1 wk; then increase to 60 mg (easy dosing schedule)
- Nausea is most significant S/E
- Drug interactions
- TCAs, SSRIs, tramadol

Anticonvulsants

Gabapentin

- Considered by many 1st-line for neuropathic pain of many types
 - -FDA approved for postherpetic neuralgia ('04)
- Level 1 evidence
 - -Postherpetic neuralgia¹
 - -Diabetic neuropathy² (not anymore.....)

I Rowbotham, et al. JAMA 1998 ⊋ Backonja, et al. JAMA 1998

Painweek.

Gabapentin vs Amitriptyline

- Randomized, double-blind, crossover study (n=25) patients with DPN
 - -Gabapentin 900-1800 mg/day vs amitriptyline 25-75 mg/day
- Results:
 - Reduction in pain: greater with amitriptyline but no significant difference (p = 0.26)
 - -Similar incidence of side effects
 - · More weight gain with amitriptyline

Morello CM, et al. Arch Int Med 1999

Gabapentin

- Initial dose 300 mg/day—300 mg TID
- Increase by 300 mg/day every 2-7 days
- Usual effective dose 1800-3600 mg/day
 - -Given 3 times daily (TID)
 - -Sometimes higher doses required

Pregabalin

- ■GABA analogue:
 - -Modulates stimulus-dependent Ca++ influx at nerve terminals
 - -Increases extracellular [GABA] in the CNS
- Dosed BID-TID (up to 300 mg/day)
- Increased bioavailability (and faster titration) vs gabapentin
- Schedule V

Oxcarbazepine

- A keto-analog of carbamazepine
 - -Shares the same mechanism of action
- Comparable analgesic efficacy to carbamazepine^{1,2}
 - -OCBZ 900-1200 mg/day ~ CBZ 400-1200 mg/day
- Better safety and tolerability profile compared with carbamazepine²
 - –Dizziness, nausea, HA, drowsiness, ataxia, diplopia, fatigue, nervousness, LFTs, hyponatremia
 - -No reported association with aplastic anemia
- I Lindstrom P. Eur Neurol 1987
- 2 Beydoun A, et al. (abstract) AAN, 54th annual meeting 2002
- 3 Zhou et al. Cochrane Database Systematic Reviews 2013

Oxcarbazepine (cont'd)

- Sodium levels should be checked at baseline and frequently
 - -Reported hyponatremic coma
 - -Elderly, medically ill may be at greater risk
- Initial dose 150-300 mg/day
 - -Increase by 150 mg every 3 days
- Usual effective dose 900-1800 mg/day
 - -Dosed BID

Opioids		
Painweek.	 	

Tramadol

- MOA: binding of the parent drug and its metabolite to mu-opioid receptors, and weak inhibition of both NE and serotonin reuptake
- Low SOE but considered effective in DPN

Harati et al. Neurology 1998 Harati et al. J Diabetes Complications 2000

Tapentadol ER

- Synthetic µ-opioid agonist and norepinephrine reuptake inhibitor
- Starting dose: 50 mg BID
- Titrated to adequate analgesia with dose increases of 50 mg BID q 3 days to an effective dosing range of 100 to 250 mg BID
- Generally GI S/Es less severe than those of opioids

Schwartz et al. Curr Med Res Opin 2011; 27(1):151-62. Vinik et al. Diabetes Care 2014; 37(8):2302-9.

Emerging Treatments for Neuropathic Pain

- Botulinum toxins
 - Extensive publications on multiple neurogenic inflammatory states; likely lots of publication and other biases
 - −2 RCTs of DPN pain (low n); both type A
 - -"Relatively" expensive
 - -Painful application

Yuan, et al. Neurology 2009 Ghasemi, et al. J Res Med Sci 2014

Emerging Treatments for Neuropathic Pain (cont'd)

- Proposed pathogenetic treatments
 - $-\alpha$ -lipoic acid (decreases reactive oxygen formation)
 - -Benfotiamine (prevents vascular damage in diabetes)
 - -Aldose-reductase inhibitors (reduces flux through the polyol pathway)
 - -Cannabinoids

Final Recommendations

- Depend greatly on patient's specific comorbidities/situation and cost
- TCAs/pregabalin/duloxetine/venlafaxine
 - -Could also consider gabapentin/oxcarbazepine
 - -Tapentadol/tramadol-later in select cases
 - -Consider BTX for intractable cases

Conclusions

- Choose medications carefully
 - -Consider comorbidities
- Have realistic expectations
 - -Slow onset, need to titrate, toxicities, long-term use
 - -Counsel patients regarding expectations and potential side effects
- Be persistent
 - -Titrate doses to efficacy or toxicity

Conclusions (cont'd)

- Consider multiple agents
 - -May allow lower doses of each
 - -Toxicity and compliance issues
 - -Concomitantly vs successively....

Thanks!

ramon.cuevas-trisan@va.gov

