

Rational Polypharmacy in Pain Management

Charles Argoff, MD

Disclosures: Charles Argoff

- Financial Disclosure:
 - -Consultant: Teva, Daiichi Sakyo, Pfizer, Nektar, Purdue, Depomed, Arbor, Novartis, Quest, Gruenenthal, Braeburn, BDSI, Vertex
 - -Speaker: Allergan, Depomed, Amgen, Teva, Daiichi Sakyo, Astra Zeneca, BDSI
 - -Research Grant: Gruenenthal, Vertex
 - -Stock Shareholder: Depomed, Pfizer
- Drug/Product Off-Label Use Disclosure
 - -Off-label use of a drug and/or product will be addressed in this presentation. This information will be verbally disclosed both at the beginning of the presentation and at the time of drug/product discussion.

1

Learning Objectives

- Define rational polypharmacy and when it is indicated for pain management
- List the array of medications and their MOAs that may be employed in polypharmacy
- Discuss the pharmacologic and clinical considerations of which the prescriber should be aware
- Explain painful conditions where polypharmacy might be considered

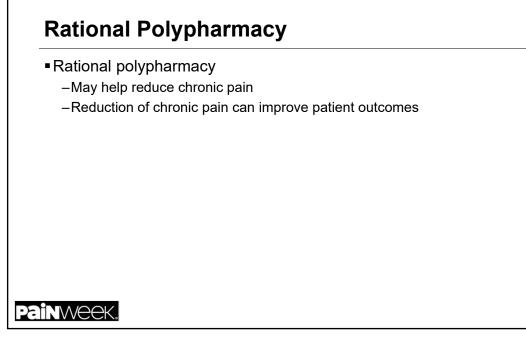
Painweek.

Real Patients to Consider in Our Discussion

- ■60 year old male experiencing painful diabetic neuropathy and chronic LBP
- 50 year old female who experiences fibromyalgia and migraine
- 70 year old female who experiences osteoporosis, osteoarthritis, and postherpetic neuralgia
- 52 year old male who experiences post-laminectomy pain
- ■28 year old female with chronic migraine

Selecting an Analgesic: Evidence and Guideline Limitations

- Paucity of trials on comparative effectiveness of different treatments
- Most treatment trials are of short duration with limited evidence for functional benefit
- Few trials evaluate strategies for choosing initial agent
- Various clinical practice guidelines may interpret evidence differently
- Clinical practice guidelines may not include latest evidence
 - -Duloxetine for low back pain or osteoarthritis


Chappell AS, et al. *Pain.* 2009;146:253-260; Chappell AS, et al. *Pain Pract.* 2011;11:33-41; Kroenke K, et al. *Gen Hosp Psychiatry.* 2009;31:206-219; Skljarevski V, et al. *Pain Med.* 2010;11:648-657; Skljarevski V, et al. *J Pain.* 2010;11:1282-1290; Skljarevski V, et al. *Spine (Phila Pa 1976).* 2010;35:E578-585; Wallace M, et al. *Expert Rev Neurother.* 2011;11:15-27.

What Is Polypharmacy?

Defined as

- -Intentional use of 2 or more medications to treat 1 condition
 - Example: opioids + NSAIDs to treat low back pain, OR
- -Use of 2 or more medications by 1 patient to treat multiple conditions
 - Example: antihypertensives, antidepressants, NSAIDs, and statins, OR
- -Use of 2 or more agents of the same chemical class
- Polypharmacy should be minimized whenever possible; however, it may be warranted under certain circumstances

Rational Polypharmacy (cont'd)

- Rational polypharmacy has become an acceptable component of chronic pain management
 - -More therapeutic options are being made available
- Useful to target pain that has peripheral and central mechanisms
- Consider the following when selecting combined regimens:
 - -Side effects (SEs)
 - -Medication interactions
 - -Ease of use
 - -Costs

Why Is Rational Polypharmacy Used?

- Patients with pain
 - -May experience only a partial response to monotherapy
 - -Cannot tolerate adverse events at analgesic doses of monotherapy
 - May have positive synergistic effects with combined agents from different medication classes

Painweek.

Multidrug Therapy Proposed Principles for Chronic Pain

- Purpose is to combine medications to achieve additive or synergistic analgesia

 Potentially at lower doses (and fewer side effects) than those required with
 monotherapy
- Combine medications with differing mechanisms or sites of action, based on patient response, functional goals, clinical experience, and potential adverse interactions
- Consider interactions of newly added drug with current medications
- Select and use one drug at a time
- Start low, go slow for dosing and titration, particularly in older patients
- Ongoing reassessment is critical
 - -Assess for clinically meaningful relief and document functional outcomes

Backonja MM, et al. Curr Pain Headache Rep. 2006;10:34-38; Gilron I, et al. Lancet. 2009;374:1252-1261.

The Chronic Pain PHARMACOLOGIC Armamentarium

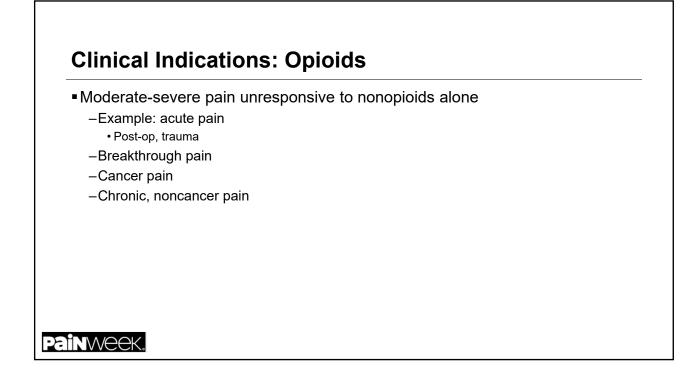
Nonopioids

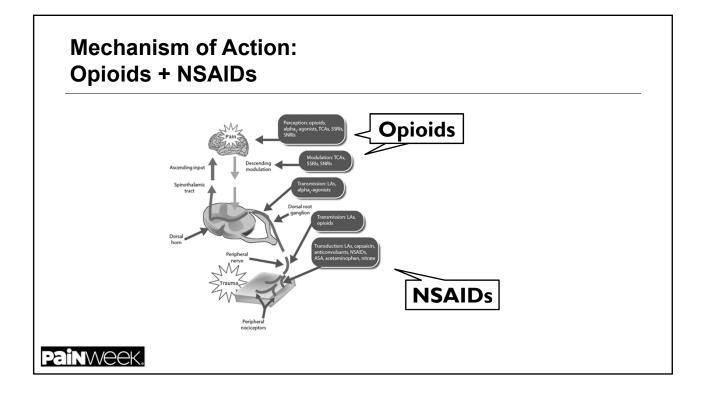
- -Acetaminophen
- -NSAIDs
- -COX-2 inhibitors
- -Antidepressants
- -Anticonvulsants
- -Topical agents, other
- Opioids
 - -Mu-opioid agonist
 - -Partial agonists

Painweek.

Nonopioid Analgesics*

Chemical Class/Examples	Class Examples	Brands/Examples
Para-aminophenols	Acetaminophen	Tylenol®
Salicylates	Aspirin Choline magnesium trisalicylate (CMT) Choline salicylate Magnesium salicylate Diflunisal	Bayer [®] Bufferin [®] Trilisate [®] Arthropan [®] Doan's [®] Argesic [®] Salgesic [®] Dolobid [®]
* Not an exhaustive list of class/examples.		




Chemical Class	Class Examples	Brands	
Arylpropionic/propionic	Ibuprofen	Advil®	
derivatives	Naproxen	Motrin [®]	
	Ketoprofen	Aleve®	
	Flurbiprofen	Anaprox®	
	Fenoprofen	Naprelan®	
	Oxaprozin	Naprosyn®	
		Orudis®	
		Oruvail®	
		Ansaid®	
		Nalfon®	
		Daypro®	
Indole and indene acetic	Indomethacin	Indocin®	
acids		Indocin [®] SR	

Clinical Indications: Nonopioids

- Variety of acute and chronic pain types
 - -Eg, trauma, post-op, cancer, arthritis
- Somatic pain
 - -Muscle and joint pain, bone/dental pain, inflammatory pain, post-op pain
- APAP vs NSAIDs
 - -Acetaminophen has analgesic, antipyretic effects
 - But lacks anti-inflammatory effect
 - -NSAIDs have analgesic, anti-inflammatory, and antipyretic effects
 - But affect gastric mucosa, platelets

Adjuvant Analgesics: Tricyclic Antidepressants

Examples

-TCAs include amitriptyline, desipramine, doxepin, imipramine, nortriptyline

MOA

- -Inhibition of reuptake of norepinephrine and serotonin
- -Analgesia is independent of antidepressant function

Uses

- -Chronic pain examples: migraine, other headaches, low back pain, cancer pain, fibromyalgia
- -Neuropathic pain examples: PDN, PHN, cancer-related pain
- -Common adverse events (AEs)
 - Examples: sedation, orthostatic hypotension and anticholinergic effects (ie, dry mouth, blurred vision, constipation, urinary retention)

Painweek.

Adjuvant Analgesics: Selective Serotonin Reuptake Inhibitors

-SSRIs include citalopram, paroxetine, fluoxetine, sertraline

MOA

-Selectively inhibit 5-HT reuptake without affecting norepinephrine

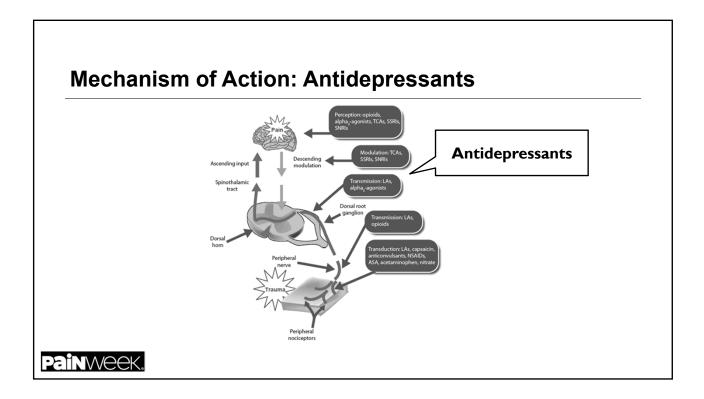
Uses

-Examples: neuropathic pain, diabetic neuropathy

Common AEs

-Examples: anxiety, insomnia, nausea, headache, drowsiness, sexual dysfunction, withdrawal symptoms upon abrupt cessation

Examples


Adjuvant Analgesics: Serotonin/Norepinephrine Reuptake Inhibitors

Examples

-SNRIs include duloxetine and venlafaxine

- MOA
 - -Block reuptake of 5-HT and norepinephrine
- Uses
 - -Example: diabetic peripheral neuropathy (DPN)
- Common AEs
 - Examples: nausea, somnolence, dizziness, constipation, dry mouth, hyperhidrosis, anorexia

Painweek.

Adjuvant Analgesics: Anticonvulsants

Examples

 AEDs include gabapentin, pregabalin, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

- MOA: exact mechanism of analgesic effect is unknown; it is thought they
 - -Reduce membrane excitability
 - -Suppress abnormal discharges in pathologically altered neurons
- ∎Uses
 - -Neuropathic pain (PDN, PHN, RSD, PSP, TN)
 - -Cancer pain, HIV-related neuropathy, phantom limb pain
 - -Migraine (prophylaxis), dysesthesia, deafferentation pain, thalamic pain
- Common AEs

-Sedation, headache, dizziness, rash, vertigo, ataxia, nausea, diplopia

Painweek.

Adjuvant Analgesics: Topicals

- Examples
 - -Lidocaine, Lidoderm, EMLA®, Capsaicin cream
- MOA
 - Lidocaine/prilocaine: block sodium channels and inhibit generation of abnormal impulses by damaged nerves
 - -Capsaicin: depletion of substance P in sensory nerve endings
- Uses
 - -Examples in acute and chronic pain
 - PHN, other neuropathic pain, mechanical allodynia
 - Pain associated with medical procedures: needle insertion, cannulation, epidural nerve blocks
- Common AEs

-Examples: localized reaction including burning sensation

The Potential Benefits of Rational Polypharmacy

- Enhance current treatment
- Use a lower dose of a medication
- Target symptom clusters (eg, pain and depression)
- Ease the treatment of a comorbid condition (eg, control diabetes to reduce DPNP)
- Address different pain mechanisms (eg, central and peripheral mechanisms)
- Treat AEs

Painweek.

Considerations for Rational Polypharmacy

- Know medication toxicities
- Avoid overlapping/additive toxicities
- Know medication MOAs
- Know medication PK/PD
 - -Avoid drug-drug interactions
- Have convincing evidence that the combination is more effective vs monotherapy and should not pose significantly greater safety or tolerability risks

MOA Considerations for Polypharmacy When using multiple medications, consider carefully the MOA of each drug: Each drug should have one MOA Drugs should not have broad-acting MOA Drugs should not have the same MOA Drugs should not have opposing MOAs

Painweek.

Possible Drug-Drug Interactions

- Interaction of absorption: one drug may cause an increase/decrease in the absorption of the other in the GI system
- Interaction of protein binding
- Interaction of metabolism (eg, CYPs)
- Interaction of receptor binding
- Interaction of therapeutic action

Types of Drug-Drug InteractionsAdditive Synergistic Potentiation Antagonism Functional/physiological Chemical/inactivation Dispositional Receptor

P450 Enzymes

- Care should be taken when coadministering drugs whose metabolism might be inhibited by other drugs in order to prevent adverse drug reactions (ADRs)
 - -For example, SSRIs inhibit the metabolism of drugs mediated by certain P450 enzymes
- > 30 human CYP isoenzymes have been identified
- ■≥ 90% of drug oxidation can be attributed to 6 main P450 cytochromes:
 - -1A2
 - -2C9
 - -2C19
 - -2D6
 - -2E1
 - -3A4

Phases of Medication Metabolism

Phase I: oxidation/reduction/hydrolysis

 Oxidation to the parent compound or deletion of the alkyl group, reduction, and hydrolysis reactions

Phase II: conjugation

-Biotransformation links a parent medication molecule or product of Phase I metabolism with an endogenous substrate (eg, glucuronic acid, sulfate, or glycine)

Painweek.

Induction and Inhibition

- Induction
 - -Increase of enzyme metabolism by a medication
 - Increasing doses are needed to produce same effect, as the body metabolizes the drug more quickly
- Inhibition
 - -Decreased enzyme activity due to direct interaction with a medication or chemical
 - -Doses should be decreased due to a decrease in metabolism

When Is Polypharmacy Indicated in Pain Management?

 To reduce medication intolerance by using a second medication that allows a lower dose of the first

-May increase treatment compliance

 To provide analgesic efficacy at certain times of the day by giving immediaterelease with long-acting medications

-Example: control breakthrough pain in a patient taking long-acting opioids

Painweek.

When Is Polypharmacy Indicated in Pain Management? (cont'd)

- To use a lower dose of a medication by using a second medication -Example: opioid-sparing
- To address partial or nonresponse to 1 medication by adding a second medication to increase efficacy

-Example: using 2 different antidepressants with different MOAs

When Is Polypharmacy Indicated in Pain Management? (cont'd)

- To target different symptom clusters that are a product of the disease or of the comorbid disease
 - Example: pain with associated depression, which in turn is associated with suicidal ideation
- To treat the comorbid disease with ease by aggressively treating the index disease

 Example: treat diabetes aggressively, thereby reducing the peripheral neuropathy severity

Painweek.

When Is Polypharmacy Indicated in Pain Management? (cont'd)

- To address different locations of the disease process
 - -Example: pain with peripheral AND central mechanisms that require medications with peripheral and central activity
 - -Example: topical lidocaine patch with antidepressant
- To treat an adverse event

Checklist for Controlling Pain in a Polypharmacy Environment

- Prescribers are charged with
 - -Prudent attention to the patient's past medication history, including OTC preparations
 - -Vigilant surveillance of systemic function
 - -Pharmacologic alternatives when medications are inappropriate

5 Principles of Polypharmacy for Pain Associated Comorbidity

- Use medications for comorbid disease with proven analgesic efficacy
- First target symptoms should ALWAYS be pain
- Target all possible pain mechanisms (eg, peripheral and central) believed to be causing the pain
- Do not aim for absolute pain relief
 - -Aim for tolerable pain levels that improve QoL or function
- Use medications to address more than 1 comorbidity
 - -Example: sedating antidepressant for pain, sleep, and depression

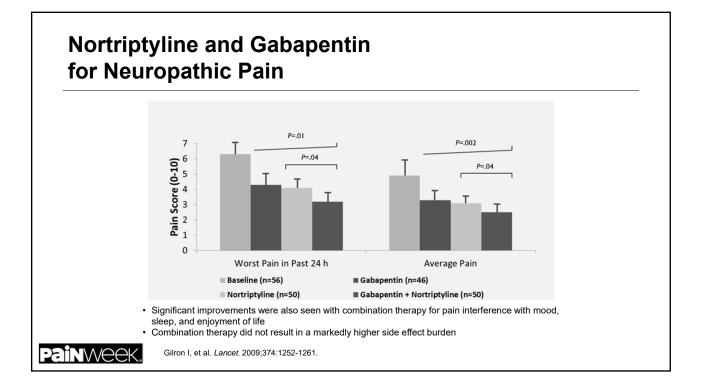
Summary of Implementing Rational Polypharmacy in the Treatment of Pain

 Polypharmacy, the use of multiple medications in a patient, should be minimized whenever possible; however, it may be warranted under certain circumstances

Rational polypharmacy may be employed when the benefits outweigh the risks

Painweek.

Summary of Implementing Rational Polypharmacy in the Treatment of Pain (cont'd)


- The benefits of rational polypharmacy include:
 - -Enhancing current treatment
 - -Using a lower dose of a medication
 - -Targeting symptom clusters
 - -Easing the treatment of a comorbid condition
 - -Addressing different pain mechanisms
 - -Treating AEs

Examples of "Rational" Polypharmacy in Specific Pain Conditions

- Neuropathic pain
- Fibromyalgia
- Chronic headache
- Low back pain

Painweek.

Morphine, Gabapentin or their Combination for Neuropathic Pain

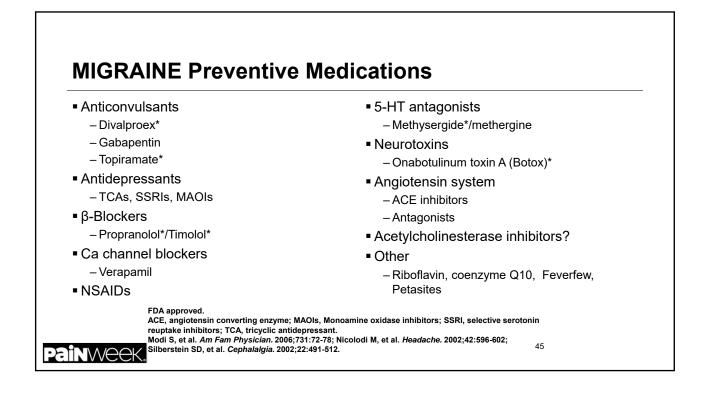
- Patients with postherpetic neuralgia or painful diabetic neuropathy
- Randomized, double-blind, active placebo-controlled, 4 period crossover trial
- Periods included active placebo (lorazepam), gabapentin, sustained release morphine, or a combination of both gabapentin and morphine each period 5 weeks
- Gabapentin and morphine combined achieved better analgesia at lower doses of each drug than either as a single agent

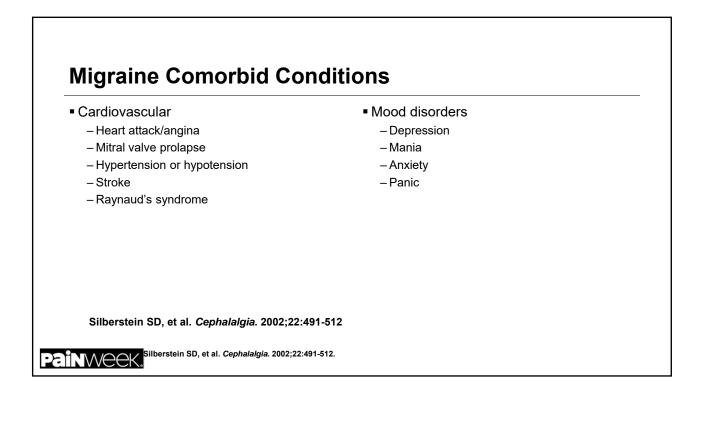
Painweek.

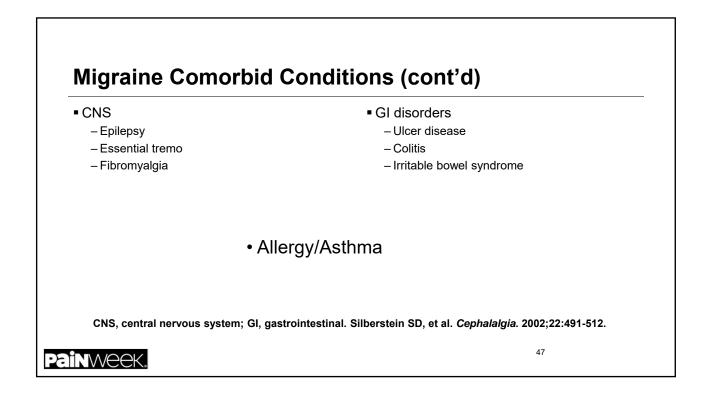
Postherpetic Neuralgia: 5% Lidocaine Medicated Plaster, Pregabalin, or a Combination of Both?

- Randomized, open label clinical effectiveness trial
- PHN patients with pain intensity score of greater than 4 were randomized to lidocaine plaster or pregabalin
- Patients experiencing pain intensity of 4 or less after 4 weeks remained on monotherapy
- Those who did not received both medications after 4 weeks
- Equal response between medications with monotherapy AND combining medications was well tolerated and improved response

Combination of Morphine with Nortriptyline for Neuropathic Pain


- Combination compared to monotherapy of each in patients with neuropathic pain (1:1:1)
- 3 6-week treatment periods
- Superior efficacy noted with morphine-nortriptyline combination over either monotherapy
- Constipation, dry mouth, and somnolence most frequent adverse effects


Painweek.


Pregabalin with Duloxetine for Fibromyalgia

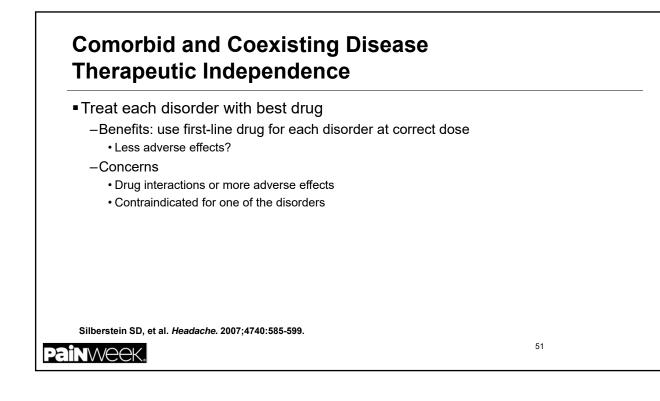

- Randomized, double-blind 4 period crossover design
- 6 week periods
- Placebo, pregabalin, duloxetine, or combination
- Daily pain intensities improved most with combination
- Fibromyalgia Impact Questionnaire scores improved most with combination
- SF-36 scores improved most with combination

Comorbid and Coexisting Disorders Monotherapy?

Preferred, but may be exception rather than rule

- -May not be best choice for either disorder
 - $\bullet\,\beta\text{-blocker}$ not first choice for hypertension
- -Dose for one may not be adequate for second
 - TCA migraine dose too low for depression

Silberstein SD, et al. *Headache*. 2007;4740:585-599.

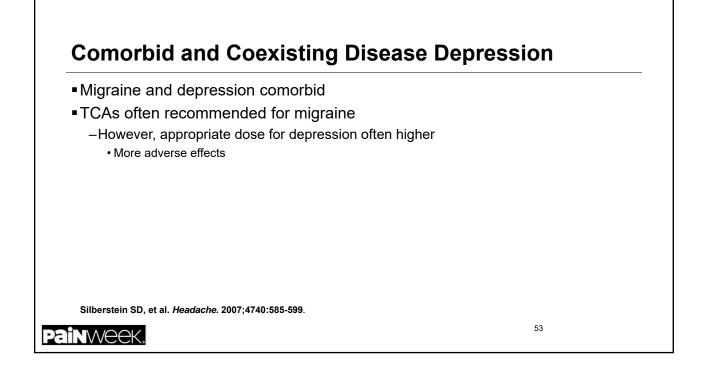

Comorbid and Coexisting Disorders Monotherapy? (cont'd)

- Therapeutic opportunities
 - -Angina: β-blocker
 - -Epilepsy: divalproex or topiramate
- Therapeutic limitations
 - –Depression or asthma: avoid β -blockers
 - -Epilepsy: caution with TCAs or neuroleptics

Silberstein SD, et al. Headache. 2007;4Silberstein SD, et al. Headache. 2007;4740:585-599. 740:585-599.

49

Comorbid and Coexisting Disease Therapeutic Independence (cont'd)


Examples

-Depression: SSRI or SNRI plus AED (divalproex or topiramate)

-Hypertension: ACE inhibitor or antagonists plus AED or TCA

AED, antiepileptic drug; SNRI, serotonin-norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor. Silberstein SD, et al. *Headache*. 2007;4740:585-599.

Comorbid and Coexisting Disease Depression (cont'd)

Better approach

- -Treat depression with SSRI or SNRI and
- Treat migraine with AED (divalproex or topiramate), β -blocker, Ca channel blocker, or even low-dose TCA

Silberstein SD, et al. Headache. 2007;47:585-599.

Tizanidine and ibuprofen in acute low back pain

- Patients with acute low back pain randomized to receive either tizanidine 4 mg po 3 times daily with ibuprofen 400 mg 3 times daily or placebo plus ibuprofen 3 times daily
- Earlier improvement occurred in combination group, significantly better than ibuprofen alone by day 3
- More GI side effects noted with ibuprofen alone group supporting animal data that tizanidine can reduce GI side effects from NSAIDs

Painweek.

Conclusions

- Rational use of polypharmacy is indicated for pain management especially in specific painful conditions
- The prescriber should survey the array of medications and their MOAs that may be employed in polypharmacy
- Available studies suggest that rational approaches to polypharmacy in pain management can lead to improved analgesia and greater treatment tolerability

References

- Chappel AS et al Pain. 2009;146:253-260
- Chappel AS, et al.. Pain Pract 2011;11:33-41
- Kroenke K, et al. Gen Hosp Psychiatry 2009;31:206-219
- Skljarevski V, et al. Pain Med. 2010;11:648-657
- Skljarevski V et al. J Pain 2010;11:1282-1290.
- Skljarevski V et al. Spine (Phila PA 1976). 210;35:E578-585
- Wallace et al. Expert Rev Neurother 2011;11:15-27

Painweek.

References (cont'd)

- Gilron I, et al. Lancet 2009;374:1252-1261
- Backonja MM, et al. Curr Pain Headache Rep 2006;10:34-38
- Silberstein SD et al. Neurology 2012; 78(17):1337-1345
- Gilron I et al. Pain 2015;156(8):1440-1448
- Gilron I et al. N Engl J Med 2005;352(13):1324-1334
- Gilron I et al.. Pain 2016;157(7): 1532-1540
- Rehm S et al. Curr Med Res Opin 2010;26(7):1607-1619
- Berry H, Hutchinson DR. J Int Med Res 1988;16(2):83-91.

Painweek.