Pain Pathophysiology Unraveled

David M Glick, DC, DAAPM, CPE

Disclosures

- Nothing to disclose
Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Classification of Pain

- Good pain vs bad pain
Good Pain

- **Nociceptive pain**: purposeful pain
 - **Eudynia**: being in pain linked to normal tissue function or damage
 - Non-maldynic pain
 - Adaptive

Bad Pain

- **Neuropathic pain**: non-purposeful pain
 - **Maldynia**: pain linked to disorder, illness, or damage
 - i.e. may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS
Pain Mechanisms

General Anatomy of Pain

Cortex and subcortical regions: Perception, sensory, & affective pain components

Brainstem: Descending modulation

Spinal cord: Synaptic transmission, modulation & central sensitization

Periphery: Transmission & peripheral sensitization

Pain Roadmap:
Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- Adapts or changes in response to function—“neuroplasticity”

Common Types of Pain

Nociceptive pain
Nociceptive stimuli
Heat
Cold
Mechanical force
Chemical irritants

Adaptive, high-threshold pain
Early warning system (protective)

Inflammatory pain
Macrophage
Mast cell
Neutrophil
Granulocyte
Tissue Damage

Adaptive, low-threshold pain
Promotes repair (protective)

Neuropathic pain
Neural lesion
Positive and negative symptoms
Peripheral nerve damage

Maladaptive, low-threshold pain
Disease state of nervous system

Functional pain
Non-Neuropathic
Non-Inflammatory
Dysfunctional pain
Normal peripheral tissue and nerves

Nociceptive vs Neuropathic Pain

Pain Pathway Steps

Adapted from Schett J, Woolf CJ. Nat Neuroscience, 2002:5:1062-1067

PAG = periaqueductal grey; RVM = rostral ventromedial medulla.
Molecular Elements: Peripheral—Central

Transduction
TRPV1, TRPV2, TRPV3, TRPM8
ASIC, DRASIC
MDEG, TREK-1
BK1, BK2
P2X3

Membrane excitability of peripheral afferents
Na1.8, Na1.9, K+ channel

Peripheral sensitization
NGF, TrkA
TRPV1
Na1.8, PKA, PKC isoforms, CaMK IV
Erk1/2, p38, JNK
IL-1β, cPLA2, COX2, EP1, EP3, EP4

Central Inhibition
GABA, GABA_A-R, GABA_B-R
NE, 5-HT
Opioid receptors
CB1

Synaptic Transmission

Presynaptic
VGCC
Adenosine-R
(mGlu-R)

Postsynaptic
AMPA/kainite-R, NMDA-R, mGlu-R
NK1
Na1.3
K+ channel

Signal transduction
PKA, PKC isoforms
ERK, p38, JNK

Gene expression
c-fos, c-jun, CREB, DREAM

Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - Receptors activated directly by stimuli
 - Injury/inflammatory response

Adapted from Scholz J, Woolf CJ. Nature Neuroscience supplement Vol 5, 2002

How is Pain Transduced?

- Nociception
 - Mechanical
 - Thermal
 - Chemical

- Mediators
 - Prostaglandins
 - Leukotrienes
 - Substance P
 - Histamine
 - Bradykinin
 - Serotonin
 - Hydroxyacids
 - Reactive oxygen species
 - Inflammatory cytokines and chemokines

Conduction

- Conduction impulses from primary nociceptors to the spinal cord (dorsal horn) along the peripheral nerve
Primary Nociception

- **A-delta fibers**
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- **C-fibers**
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

Peripheral Pain Nociceptors

- **Aβ** - muscle spindle secondary endings, touch, and kinesthesia.
- **Aδ** - pain, temperature, crude touch, and pressure.

Transmission & Modulation

Ascending nociceptive pathways
Transmitting nociceptive impulses from the dorsal horn to supraspinal targets
- **Fast (green)** Neospinalthalamic
- **Slow (yellow)** Paleospinalthalamic

Descending inhibitory tracts
- **(blue)** Increase or decrease volume control of incoming nociceptive signals reaching the brain
 - 5-HT - Serotonin
 - NE - Norepinephrine

How is Pain Conducted and Transmitted?

- **Excitatory Transmitters**
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, Glutamate

- **Inhibitory Transmitters**
 - GABA
 - Glycine
 - Somatostatin
 - a2 agonists

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body’s pain inhibitory systems (increased pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain

- Enables NS to modify its function according to different conditions or demands placed upon it

How Acute Pain Becomes Chronic

- Peripheral sensitization
 - Tissue damage releases sensitizing "soup" of cytokines and neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation and increased rate of firing
- Central sensitization—Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia and allodynia
Definitions

- **Hyperalgesia**
 - Lowered threshold to different types of noxious stimuli

- **Allodynia**
 - Painful response to what should normally be non-painful stimuli

Neuroplasticity in Pain Processing

![Graph showing the relationship between stimulus intensity and pain intensity, highlighting Hyperalgesia and Allodynia.](image)
Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization
How Acute Pain Becomes Chronic

- Central sensitization
 - Activation
 - “Wind up” of dorsal horn nociceptors
 - Modulation
 - Excitatory/Inhibitory neurotransmitters
 - Decreased central inhibition of pain transmission
 - Prime role in chronic pain, particularly neuropathic pain

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process\(^1\),\(^2\),\(^3\),\(^4\)
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons\(^2\),\(^3\)

Central Sensitization

Key Influences upon signal propagation

- Excitatory neurotransmitters
 - Substance P, CGRP, glutamate
- NMDA channel activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/serotonin (5HT)
- Mu opioid receptor

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067
Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing1,2

Spinal cord glial cell

Aδ

C Fiber

Descending inhibitory axon

Second-order projection neuron (to brain)

GABA-ergic inhibitory interneuron

Neuroplasticity: Neural Reorganization

CTB = cholera toxin B

CTB = cholera toxin B

Photo courtesy of Professor S.B. McMahon

CTB = cholera toxin B
Neuroplasticity: Cross Talk

Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate/NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation—excitatory/Inhibitory neurotransmitters
 - Decreased tone—descending inhibitory pathways
 - Activation/migration of glial cells into the spinal cord
 - Changes in the thalamus and primary somatosensory cortex

Brain Regions Involved in Pain Processing

- **Somatosensory cortex**
 - Localization

- **Thalamus**
 - Routing

- **Hippocampus**
 - Pain memory/Learning

- **Amygdala**
 - Emotional Aspect

- **Prefrontal cortex**
 - Motor planning

- **Anterior cingulate cortex**
 - Context/situation of pain

- **Insular cortex**
 - Pain judged to the degree and where pain is imagined

Analgesics That Modify Pain Processes

- **Transduction**
 - NSAIDs
 - Antihistamines
 - Membrane stabilizing agents
 - Local anesthetic cream
 - Opiods
 - Bradykinin & Serotonin antagonists

- **Transmission/Modulation**
 - Spinal opioids
 - α2 agonists
 - NMDA receptor antagonists
 - NSAIDs
 - NO inhibitors
 - K+ channel openers

- **Perception**
 - Parenteral opioids
 - α2 agonists
 - General anesthetics

- **Conduction**
 - Local anesthetics
 - Peripheral nerve, plexus, epidural block

Pharmacological Targets in Pain

Peripheral Sensitization
- NSAIDs
- Venoms

Ectopic Activity
- Neuronal Modulation
- Pain-Channel Blockers
- cannabinoids
- Inflammation

Descending Modulation
- Central Sensitization
- CNS
- Peripherial Transduction

Central Sensitization
- Peripheral Transduction
- Central Transmission
- Modulation
- Anticonvulsants
- Antidepressants

The Chronic Pain Armamentarium

Nonopioids
- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids
- Mu-opioid agonists
- Mixed agonist-antagonists

Adjuvant analgesics
- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics
VA DoD Stepped Pain Care Model

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle relaxants
- Opioids
Nonopioids: Acetaminophen

Example
- Acetaminophen

Mechanism of action
- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

FDA Warning
- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome and toxic epidermal necrolysis

Nonopioids: NSAIDs

Examples
- Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)

Mechanism of action
- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- Inhibition of leukotriene B4 production
- Lipoxins (signaling resolution of inflammation)
Opioids

Examples
- Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of action
- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects
Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Mechanism of Action: Opioids

Adapted from Woolf C, Max M Anesthesiology 2001
Adjuvant Analgesics: Tricyclic Antidepressants

Examples
- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action
- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability)
 - cardiotoxic (overdose)

TCAs and SNRIs Pharmacological Properties

http://pharmacologycorner.com
SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples
- Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline

Mechanism of action
- Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Serotonin

- **International Union of Pure and Applied Chemistry nomenclature**
 - 5-Hydroxytryptamine (5-HT)
 - Monoamine neurotransmitter, biochemically derived from tryptophan
 - **Receptors** are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) found in the **central** and **peripheral** nervous systems
Serotonin/5-HT Receptors

<table>
<thead>
<tr>
<th>Family</th>
<th>Type</th>
<th>Mechanism</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT1</td>
<td>Gs/Gi protein coupled</td>
<td>Decreasing cellular levels of cAMP</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT2</td>
<td>Gs/G1 protein coupled</td>
<td>Increasing cellular levels of IP3 and DAG</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT3</td>
<td>Ligand-gated Na+ and K+ cation channel</td>
<td>Depolarizing plasma membrane</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT4</td>
<td>Gs protein coupled</td>
<td>Increasing cellular levels of cAMP</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT6</td>
<td>Gi/Gi protein coupled</td>
<td>Decreasing cellular levels of cAMP</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT7</td>
<td>Gi protein coupled</td>
<td>Increasing cellular levels of cAMP</td>
<td>Excitatory</td>
</tr>
</tbody>
</table>

Serotonin/5-HT Receptors (cont’d)

- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile erection
 - Pupil dilatation

- 5-HT1a (cont)
 - Respiration
 - Sexual behavior
 - Sleep
 - Sociability
 - Thermoregulation

- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood
SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

Examples
- Duloxetine, milnacipran, and venlafaxine

Mechanism of action
- Block reuptake of 5-HT and NA
 - Better tolerated, lower tendency for drug-drug interactions, better overdose safety

Modulation of Central Sensitization by 5-HT & NE Descending Pathways
Adjuvant Analgesics: Antiepileptics

Examples
- Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action
- Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca2+)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Binds the α2δ subunit of voltage gated Ca+ channels, inhibit NT release
Site of Action: Antiepileptics

Adjuvant Analgesics: Topicals

Examples
- Lidocaine patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action
- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response
Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Muscle Relaxants: Spasmolytics

- Enhancing the level of inhibition
 - Mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation
- Common examples
 - Cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (benzodiazepine)
- Common adverse effects
 - Sedation, lethargy & confusion (cyclobenzaprine), dependence (carisopradol)
Case Study

- 54-year-old with 3 year history of neck, shoulder, and upper extremity pain following a lifting injury
 - Current medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Robaxin
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 - Tailoring treatment based on the individual patient and pain type
- Do not forget to look for the spear