

Pain Pathophysiology Unraveled

David M Glick, DC, DAAPM, CPE

Disclosures

Nothing to disclose

Learning Objectives

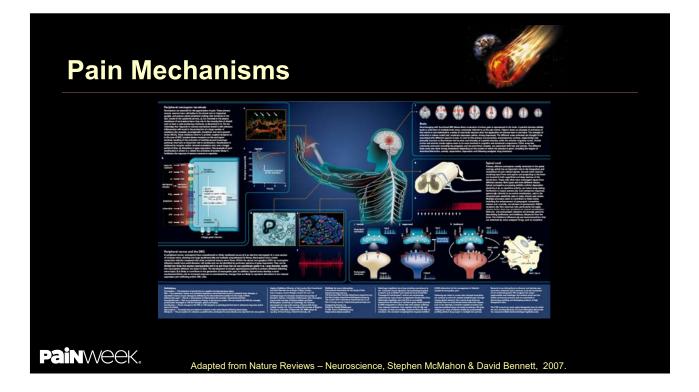
- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Painweek.

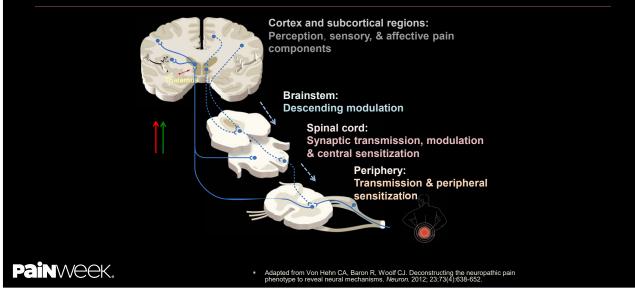
Classification of Pain

Good pain vs bad pain

Good Pain

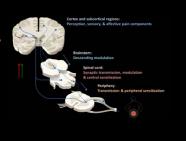

Nociceptive pain: purposeful pain

- Eudynia: being in pain linked to normal tissue function or damage
- -Non-maldynic pain
- -Adaptive

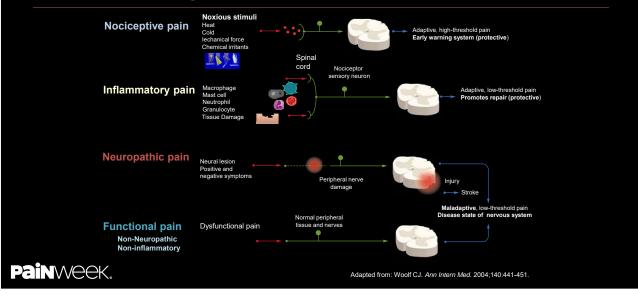

Painweek.

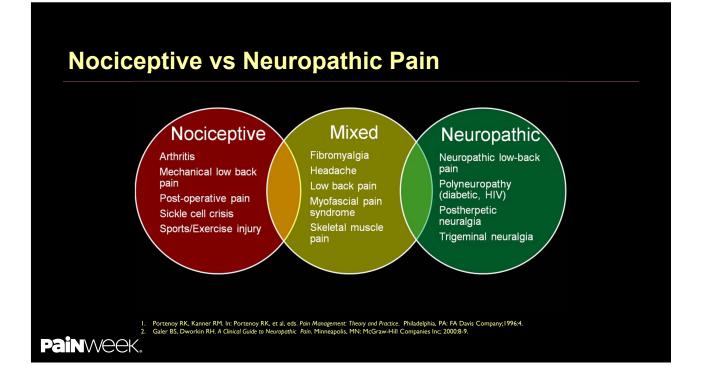
Bad Pain

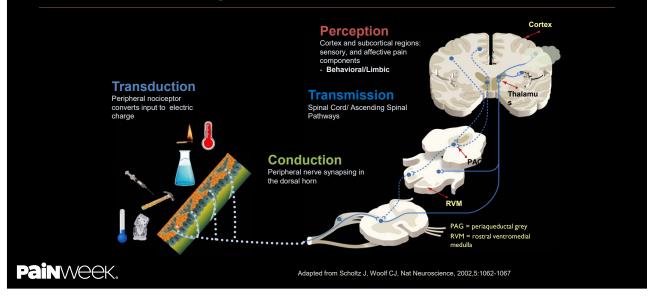
- Neuropathic pain: non-purposeful pain
 - Maldynia: pain linked to disorder, illness, or damage
 - –i.e may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS



General Anatomy of Pain


Pain Roadmap: Peripheral and Central Nervous System Landmarks


- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- · Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- Adapts or changes in response to function— "neuroplasticity"


1. Gardner EP, et al. In: Kandel E, et al. eds. Principles of Neural Science. 4th ed. McGraw-Hill Medical; 2000; chapters 21-23.

Common Types of Pain

Pain Pathway Steps

Molecular Elements: Peripheral—Central

Transduction TRPV1, TRPV2, TRPV3, TRPM8 ASIC, DRASIC MDEG, TREK-1 BK₁, BK₂ P2X₃

Membrane excitability of

<u>peripheral afferents</u> Na_v 1.8, Na_v 1.9 K⁺ channel

Peripheral sensitization

NGF, TrkA TRPV1 Na_v 1.8 PKA, PKC isoforms, CaMK IV Erk ½, p38, JNK IL-1B, cPLA₂, COX2, EP1, EP3, EP4 PCINVC⊖K^TNFα Synaptic Transmission

Presynaptic VGCC Adenosine-R (mGlu-R)

<u>Postsynaptic</u> AMPA/kainite-R, NMDA-R, mGlu-R

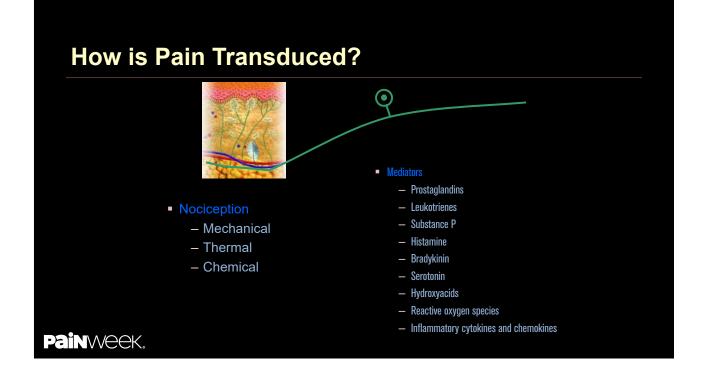
Na_v 1.3 K⁺ channel <u>Central Inhibition</u> GABA, GABA_A-R, GABA_B-R Glycine-R NE, 5-HT Opiod receptors CB1

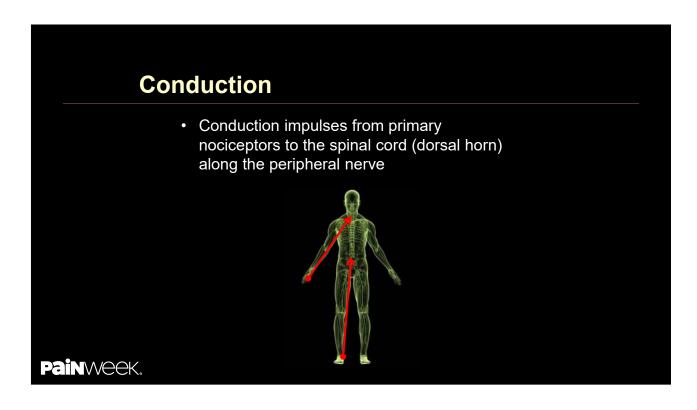
<u>Signal transduction</u> PKA, PKC isoforms ERK, p38,JNK

<u>Gene expression</u> c-fos, c-jun, CREB, DREAM

Adapted from Scholz J, Woolf CJ, Nature Neuroscience supplement Vol 5, 2002

Transduction: Processing at Peripheral Nerve Endings


Conversion of mechanical, thermal or chemical stimuli into an electric charge

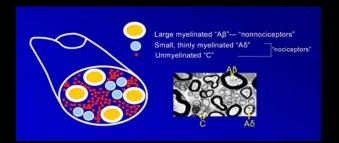

Involves

- Receptors activated directly by stimuli
- Injury/inflammatory response

Painweek.

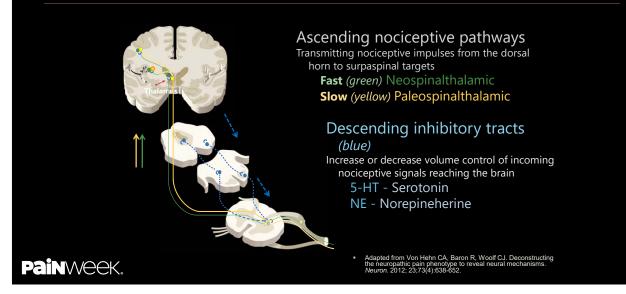
Adapted from Dougherty PM, et al. Neurochemistry of somatosensory and pain processing. In: Benzon H, et al, eds. Essentials of Pain Medicine. Philadelphia, PA; Saunders; 2011: chapter 2.

Primary Nociception


- A-delta fibers
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- C-fibers
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting • .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

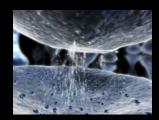
Peripheral Pain Nociceptors



Aβ - muscle spindle secondary endings, touch, and kinesthesia. Aδ - pain, temperature, crude touch, and pressure.

Bashbaum A, Jessell T, The perception of Pain, In Kendal E, Schwartz J, Principles of Neural Science 4th ed, New York, McGraw Hill, 2000, 482-483.

Transmission & Modulation



How is Pain Conducted and Transmitted?

- Excitatory Transmitters Substance P

 - Calcitonin gene related peptide
 - Aspartate, Glutamate

- Inhibitory Transmitters (descending inhibitory pathways)
 - GABA
 - Glycine
 - Somatostatin
 - a2 agonists

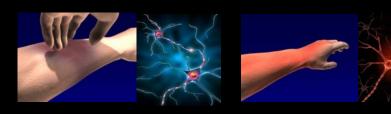
Role of Neuronal Plasticity in Pain

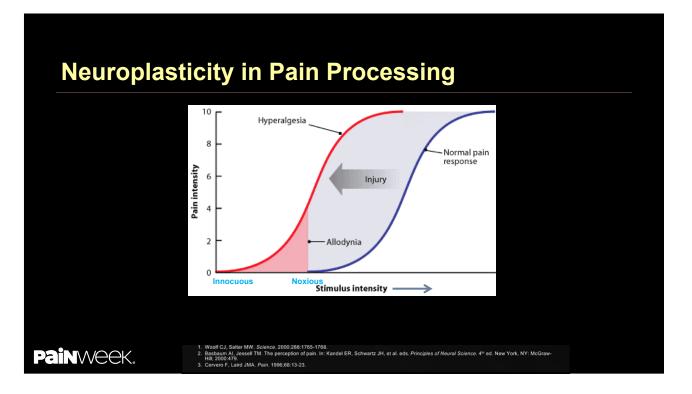
- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (increased pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it

Painweek.

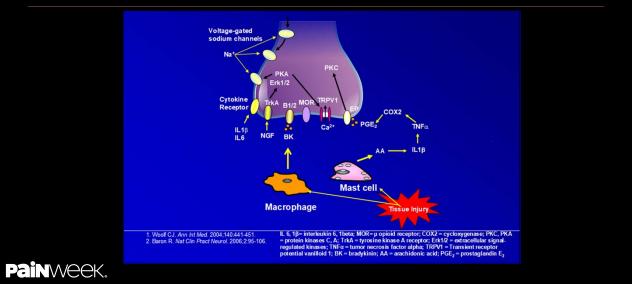
How Acute Pain Becomes Chronic

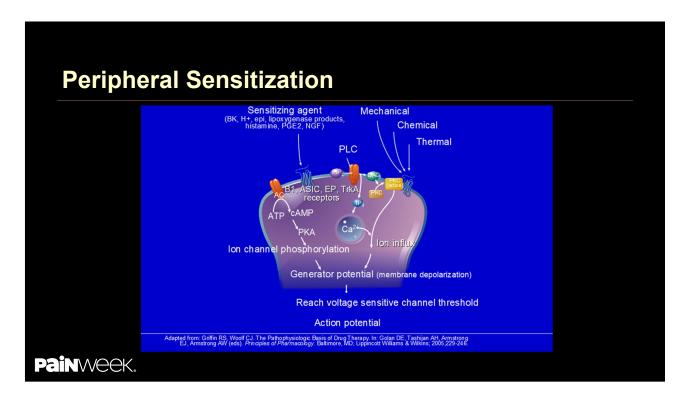
- Peripheral sensitization
 - Tissue damage releases sensitizing "soup" of cytokines and neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation and increased rate of firing
- Central sensitization—Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia and allodynia


Definitions


Hyperalgesia

Lowered threshold to different types of noxious stimuli


Allodynia


 Painful response to what should normally be non-painful stimuli

Neuroplasticity in Peripheral Pain Transmission

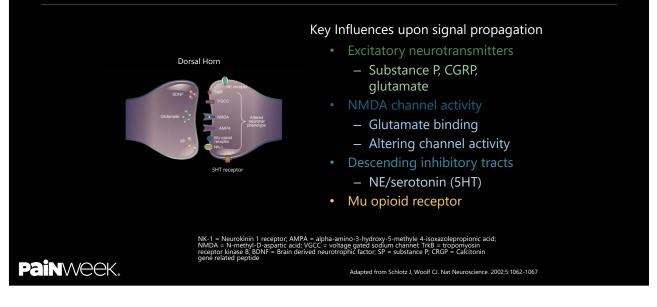
How Acute Pain Becomes Chronic

- Central sensitization
 - Activation
 - "Wind up" of dorsal horn nociceptors
 - -Modulation
 - Excitatory/Inhibitory neurotransmitters
 - -Decreased central inhibition of pain transmission
 - -Prime role in chronic pain, particularly neuropathic pain

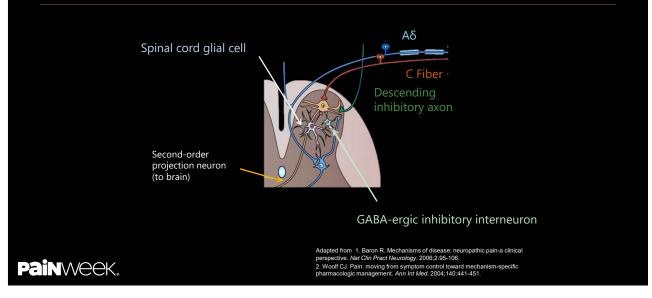
Painweek.

Definitions

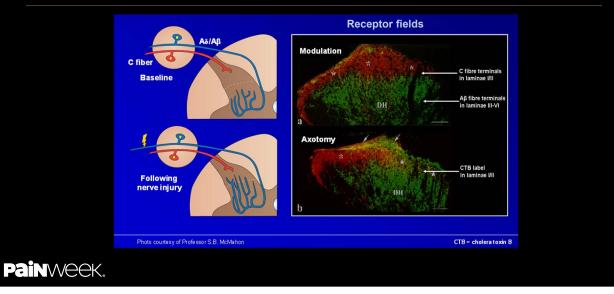
- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process^{1,2,3,4}
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons^{2,3}


Central Sensitization Afferent first order neuron Dorsal horn neuron

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P

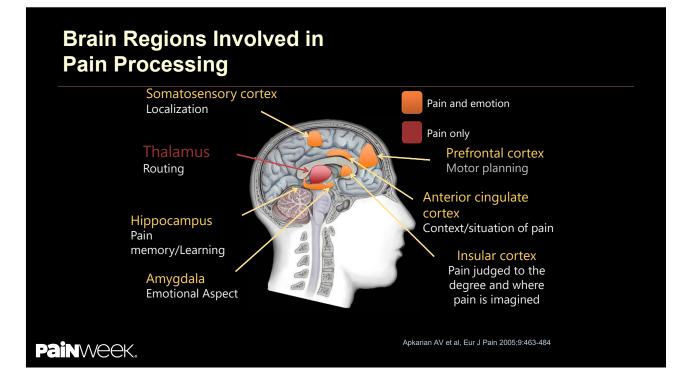

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

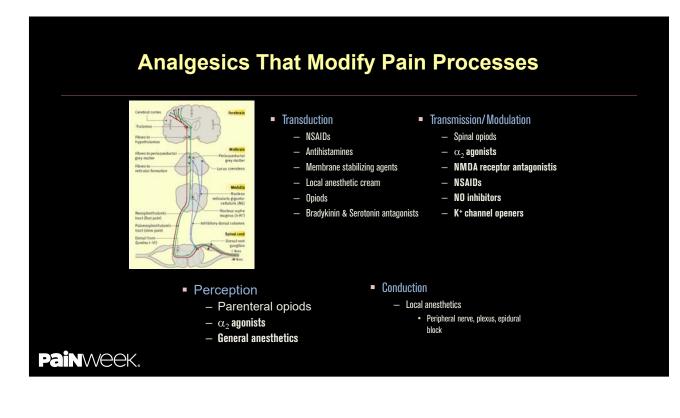
Painweek.


Central Sensitization (cont'd)

Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing^{1,2}

Neuroplasticity: Neural Reorganization


<section-header><section-header><section-header><section-header><image><image>


Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate/NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation—excitatory/Inhibitory neurotransmitters
 - Decreased tone-descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
 - Changes in the thalamus and primary somatosensory cortex⁴

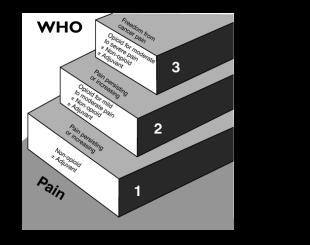
Painweek.

Mannion RJ, Woolf CJ: Clin J Pain. 2000;16(3):S151-S153. 2. Ossipov MH, et al. Ann NY Acad Sci. 2000;909:12-24.
 Wieseler-Frank J, et al. Neurosignals. 2005;14:166-174. 4. Guilbaud G, et al. Exp Brain Res. 1992;92:227-245.

Pharmacological Targets in Pain Ectopic Activity Descending Modulation Na+ channel blockers Central *a*-agonists Ca+2 channel blockers TCAs GABAergic enhancement SNRIs Opiods/Tramadol Glutaminergic inhibition CNS 0 PNS 0 **Central Sensitization Opiods/Tramadol** Central α-agonists NMDA antagonists TCAs Peripheral Sensitization Anticonvulsants Anticonvulsants NSAIDS Local Vanilloids Anesthetics Opiods Painweek. Woolf C, Max M Anesthesiology 2001

The Chronic Pain Armamentarium

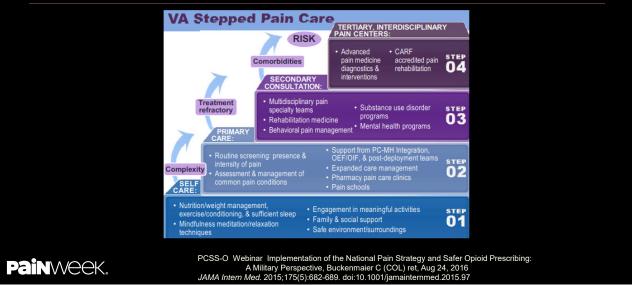
<u>Nonopioids</u>


- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids

- Mu-opioid agonists
- Mixed agonist-antagonists

Adjuvant analgesics


- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

Painweek.

JC Ballantyne Oncologist 2003:8(6):567-75. © AlphaMed Press; WHO. 2005.

VA DoD Stepped Pain Care Model

Common Pharmacologic Therapies

1.00

Cortex and subcortical regio Perception, sensory, and affective pain components

- Acetaminophen
- NSAIDS
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle relaxants
- Opioids

Nonopioids: Acetaminophen

<u>Example</u>

-Acetaminophen

Mechanism of action

- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

FDA Warning

- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome and toxic epidermal necrolysis

Painweek.

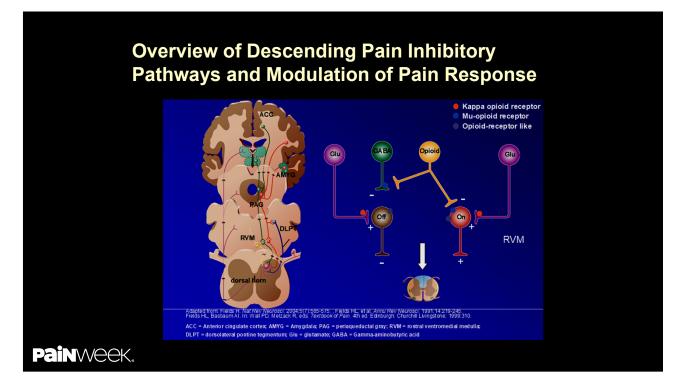
Nonopioids: NSAIDs

Examples

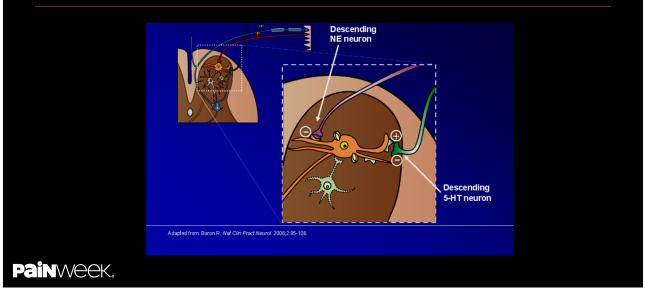
 Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)

Mechanism of action

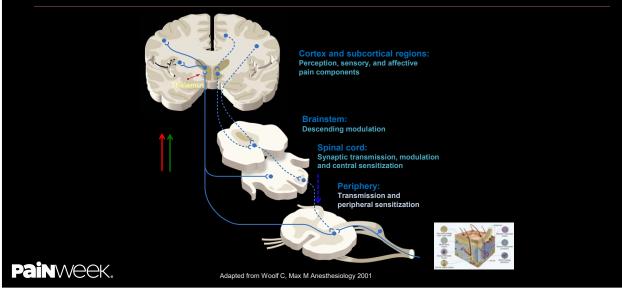
- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- –Inhibition of leukotriene B4 production
- -Lipoxins (signaling resolution of inflammation)


Opioids

<u>Examples</u>

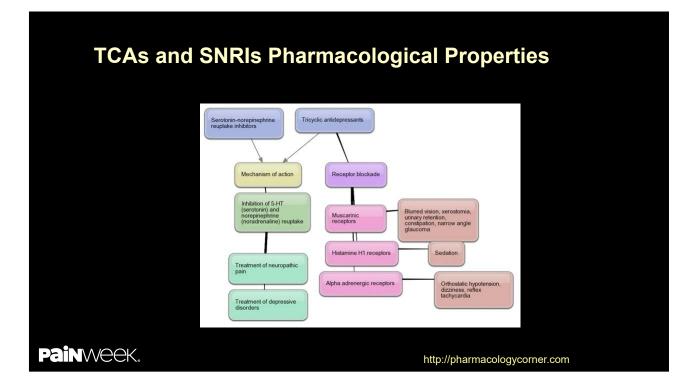

 Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of action


- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Mechanism of Action: Opioids



Adjuvant Analgesics: Tricyclic Antidepressants

<u>Examples</u>

- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline <u>Mechanism of action</u>

- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability)
 - cardiotoxic (overdose)

SSRIS (Selective Serotonin Reuptake Inhibitors)

<u>Examples</u>

-Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline <u>Mechanism of action</u>

-Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Painweek.

Serotonin

- International Union of Pure and Applied Chemistry nomenclature
 - 5-Hydroxytryptamine (5-HT)
 - Monoamine neurotransmitter, biochemically derived from tryptophan
 - Receptors are a group of G protein-coupled receptors (<u>GPCRs</u>) and ligand-gated ion channels (<u>LGICs</u>) found in the <u>central</u> and <u>peripheral</u> nervous systems

Serotonin/5-HT Receptors

Family	Туре	Mechanism	Potential
5-HT1	Gi/Go-protein coupled.	Decreasing cellular levels of cAMP.	Inhibitory
5-HT ₂	Gq/G11-protein coupled.	Increasing cellular levels of IP3 and DAG.	Excitatory
5-HT3	Ligand-gated Na ⁺ and K ⁺ cation channel.	Depolarizing plasma membrane.	Excitatory
5-HT4	Gs-protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT5	Gi/Go-protein coupled.[4]	Decreasing cellular levels of cAMP.	Inhibitory
5-HT6	Gs-protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT7	Gs-protein coupled.	Increasing cellular levels of cAMP.	Excitatory

Painweek.

http://en.wikipedia.org/wiki/5-HT_receptor

Serotonin/5-HT Receptors (cont'd)

- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile erection
 - Pupil dilatation

Painweek.

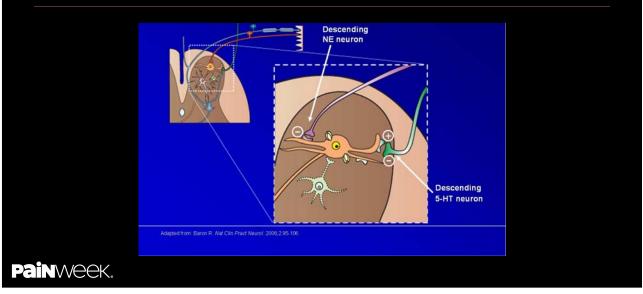
- 5-HT1a (cont)
 - Respiration
 - Sexual behavior
 - Sleep
 - Sociability
 - Thermoregulation
- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood

http://en.wikipedia.org/wiki/5-HT_receptor

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

<u>Examples</u>

-Duloxetine, milnacipran, and venlafaxine


Mechanism of action

-Block reuptake of 5-HT and NA

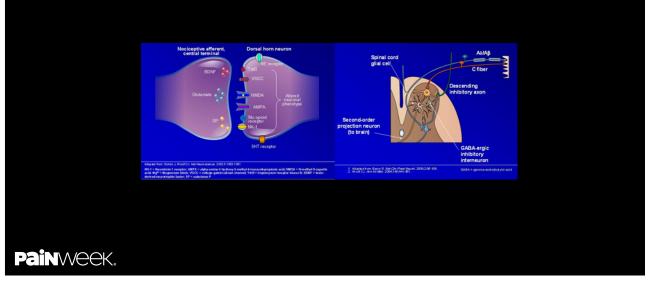
• Better tolerated, lower tendency for drug-drug interactions, better overdose safety

Painweek.

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

<section-header><section-header><section-header>

Adjuvant Analgesics: Antiepileptics


Examples

 Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- -Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca+ +)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - + Binds the $\alpha 2\delta$ subunit of voltage gated Ca+ channels, inhibit NT release

Site of Action: Antiepileptics

Adjuvant Analgesics: Topicals

Examples

- Lidocaine patch 5% , eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action

- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Painweek.

Muscle Relaxants: Spasmolytics

- Enhancing the level of inhibition
 - Mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation
- Common examples
 - Cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (benzodiazepine)
- Common adverse effects
 - Sedation, lethargy & confusion (cyclobenzaprine), dependence (carisopradol)

Case Study

54-year-old with 3 year history of neck, shoulder, and upper extremity pain following a lifting injury

Current medications

- Fluoxetine
- Milnacipran
- Gabapentin
- Clonazepam
- Alprazolam
- Robaxin
- Tapentadol
- Acetaminophen and propoxyphene
- Zolpidem
- Diclofenac topical
- Acetaminophen

Painweek.

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 - Tailoring treatment based on the individual patient and pain type
- Do not forget to look for the spear