

Pain Pathophysiology Unraveled

David M Glick, DC, DAAPM, CPE

Disclosures

Nothing to disclose

Learning Objectives

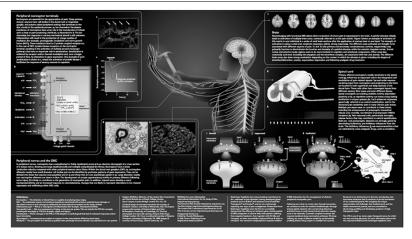
- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Classification of Pain

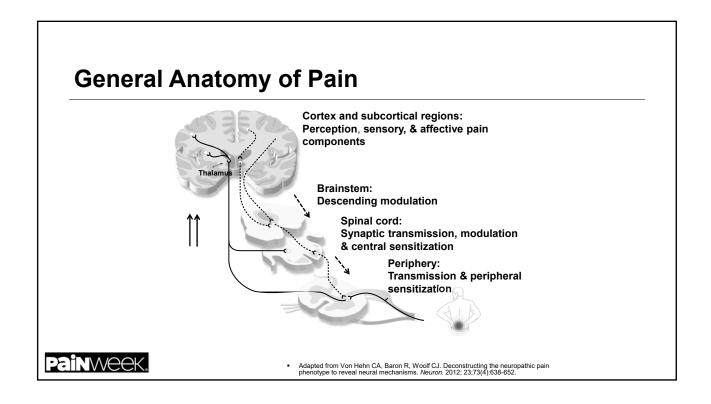
■ Good pain vs bad pain

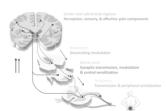
Good Pain

- Nociceptive pain: purposeful pain
 - Eudynia: being in pain linked to normal tissue function or damage
 - -Non-maldynic pain
 - -Adaptive


Bad Pain

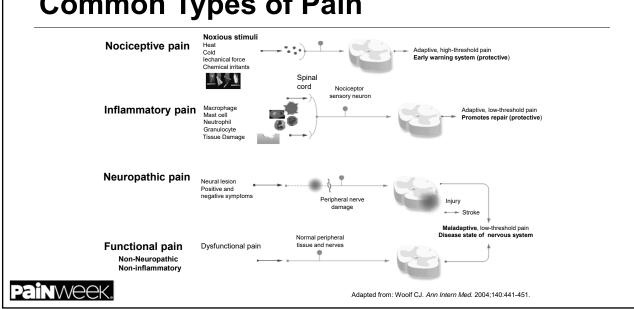
- Neuropathic pain: non-purposeful pain
 - Maldynia: pain linked to disorder, illness, or damage
 - –i.e may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS


Pain Mechanisms

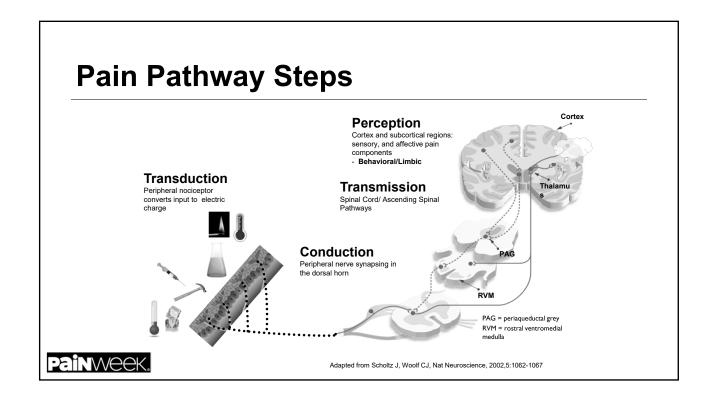

Adapted from Nature Reviews - Neuroscience, Stephen McMahon & David Bennett, 2007.

Pain Roadmap:

Peripheral and Central Nervous System Landmarks


- · Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- · A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- · Adapts or changes in response to function— "neuroplasticity"

1. Gardner EP, et al. In: Kandel E, et al, eds. *Principles of Neural Scien*ce. 4th ed. McGraw-Hill Medical; 2000; chapters 21-23.


Painweek

Common Types of Pain

Nociceptive vs Neuropathic Pain Nociceptive Arthritis Mechanical low back pain Post-operative pain Sickle cell crisis Sports/Exercise injury Neuropathic Neuropathic low-back pain Myofascial pain syndrome Skeletal muscle pain Neuropathic low-back pain Polyneuropathy (diabetic, HIV) Postherpetic neuralgia Trigeminal neuralgia Trigeminal neuralgia 1. Fortency RK, Kanner RM. In: Portency RK, et al. eds. Fam Management: Theory and Practice. Philadelphia, PA: FA Davis Company;1996-4. 2. Galer BS, Dworkin RH. A Clinical Guide to Neuropathic Fam. Minneapolis, NN: McGraw-Hill Companies Inc. 20008-9.

PainWeek

Molecular Elements: Peripheral—Central

<u>Transduction</u> TRPV1, TRPV2, TRPV3, TRPM8 ASIC, DRASIC MDEG, TREK-1 BK₁, BK₂ P2X₃

Membrane excitability of peripheral afferents

Na_v 1.8, Na_v 1.9 K⁺ channel

<u>Peripheral sensitization</u> NGF, TrkA

TRPV1 $Na_v 1.8$ PKA, PKC isoforms, CaMK IV Erk ½, p38, JNK IL-1B, cPLA₂, COX2, EP1, EP3,

Synaptic Transmission <u>Presynaptic</u>

VGCC Adenosine-R (mGlu-R)

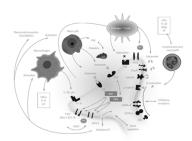
Postsynaptic

AMPA/kainite-R, NMDA-R, mGlu-R Na_v 1.3 K⁺ channel

<u>Central Inhibition</u> GABA, GABA_A-R, GABA_B-Glycine-R NE, 5-HT Opiod receptors CB1

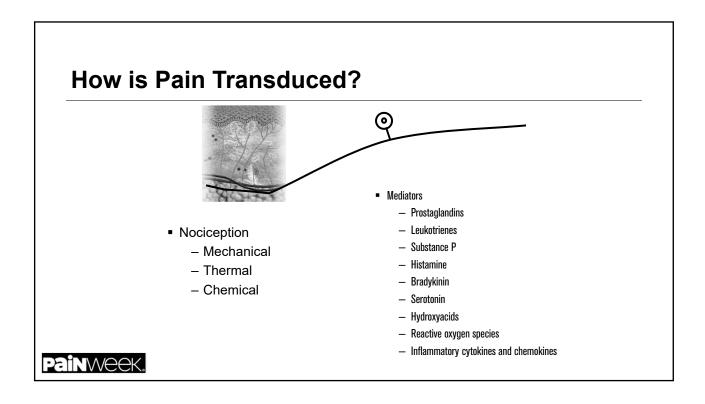
Signal transduction

PKA, PKC isoforms ERK, p38,JNK


Gene expression

c-fos, c-jun, CREB, DREAM

Adapted from Scholz J, Woolf CJ, Nature Neuroscience supplement Vol 5, 2002


Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - Receptors activated directly by stimuli
 - Injury/inflammatory response

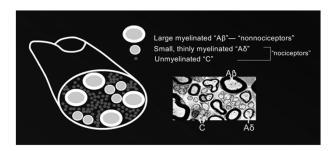
Adapted from Dougherty PM, et al. Neurochemistry of somatosensory and pain processing. In: Benzon H, et al, eds. *Essentials of Pain Medicine*. Philadelphia, PA; Saunders; 2011: chapter 2.

Conduction

• Conduction impulses to the spinal cord (dorsal horn) along the peripheral nerve

Primary Nociception

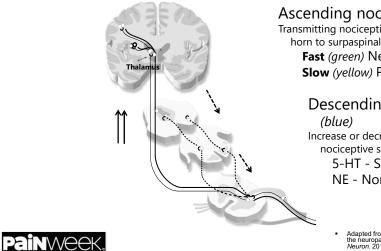
- A-delta fibers
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter



- C-fibers
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

Painweek.

Peripheral Pain Nociceptors


Aβ - muscle spindle secondary endings, touch, and kinesthesia.

Aδ - pain, temperature, crude touch, and pressure.

Bashbaum A, Jessell T, The perception of Pain, In Kendal E, Schwartz J, Principles of Neural Science 4th ed, New York, McGraw Hill, 2000, 482-483.

Transmission & Modulation

Ascending nociceptive pathways

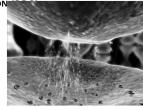
Transmitting nociceptive impulses from the dorsal horn to surpaspinal targets

Fast (green) Neospinalthalamic **Slow** (yellow) Paleospinalthalamic

Descending inhibitory tracts

Increase or decrease volume control of incoming nociceptive signals reaching the brain

5-HT - Serotonin


NE - Norepineherine

 Adapted from Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012; 23;73(4):638-652.

How is Pain Conducted and Transmitted?

ORSAL ROOT

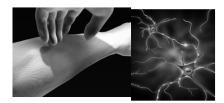
- Excitatory Transmitters
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, Glutamate
- Inhibitory Transmitters (descending inhibitory pathways)
 - GABA
 - Glycine
 - Somatostatin
 - a2 agonists

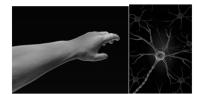
Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (increased pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it

How Acute Pain Becomes Chronic

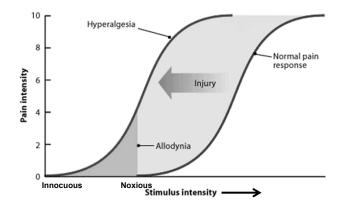
- Peripheral sensitization
 - Tissue damage releases sensitizing "soup" of cytokines and neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation and increased rate of firing
- Central sensitization—Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia and allodynia

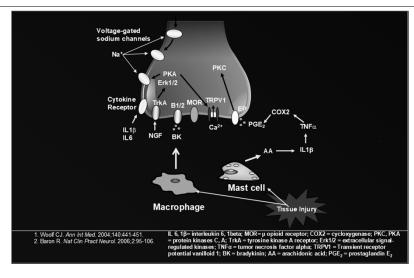

Definitions


Hyperalgesia

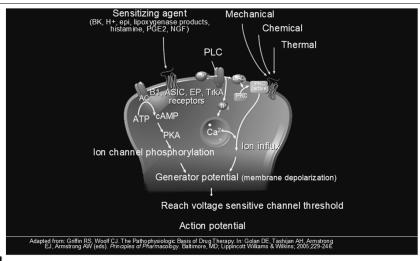
 Lowered threshold to different types of noxious stimuli

Allodynia


 Painful response to what should normally be non-painful stimuli


Neuroplasticity in Pain Processing

Painweek.


Woolf CJ, Salter MW. Science. 2000; 288:1785-1768.
 Babbaum AJ, Jessell TM. The perception of pain. In: Kandel ER, Schwartz JH, et al. eds. Principles of Neural Science. 4th ed. New York, NY: McGraw Hil; 2000.479.
 Conzon F. Laird JMA. Pain. 1996;68:13:23.

Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization

Painweek.

How Acute Pain Becomes Chronic

- Central sensitization
 - Activation
 - · "Wind up" of dorsal horn nociceptors
 - Modulation
 - Excitatory/Inhibitory neurotransmitters
 - -Decreased central inhibition of pain transmission
 - -Prime role in chronic pain, particularly neuropathic pain

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process^{1,2,3,4}
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons^{2,3}
 - Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Fourth Edition).
 New York: McGraw Hill (Health Professions Division). 2000;472-491.
 Millan MJ. Progress in Neurobiology 1999;57:1-164.
 Dickenson AH. Brit J Anaesthesia 1995;75:193-200.
 Suzuki R and Dickenson AH. Neuroreport 2000;11:R17-21.

Central Sensitization

Afferent first order neuron

Dorsal horn neuron

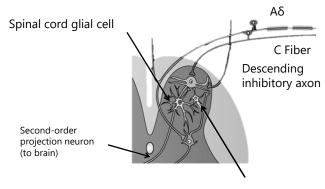
NK-1 = Neurokinin 1 receptor, AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Central Sensitization (cont'd)

Dorsal Horn

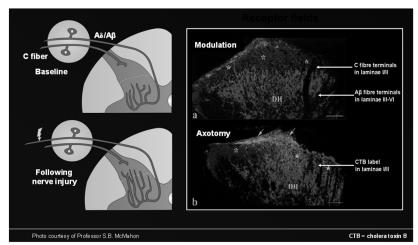
Key Influences upon signal propagation


- Excitatory neurotransmitters
 - Substance P, CGRP, glutamate
- NMDA channel activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/serotonin (5HT)
- · Mu opioid receptor

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P; CRGP = Calcitonin gene related peptide

Adapted from Schlotz J. Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

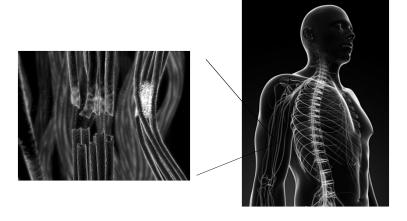
Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing^{1,2}


GABA-ergic inhibitory interneuron

Adapted from 1. Baron R. Mechanisms of disease: neuropathic pain-a clinical perspective. *Nat Clin Pract Neurology*. 2006;2:95-106.

2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. *Ann Int Med*. 2004;140:441-451.

Painweek.

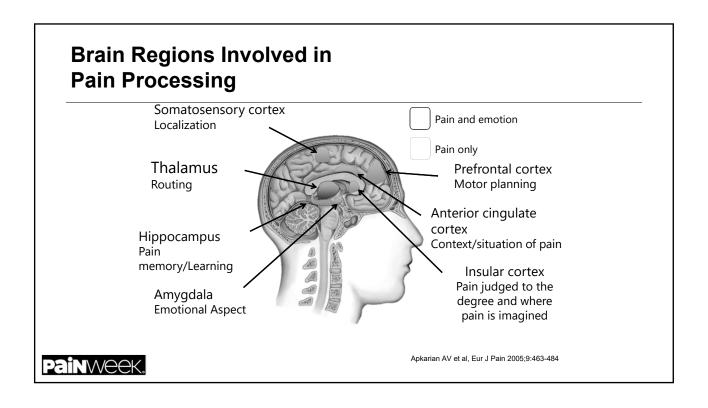

Neuroplasticity: Neural Reorganization

Painweek.

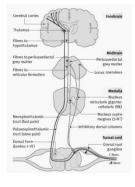
CTB = cholera toxin B

Neuroplasticity: Cross Talk

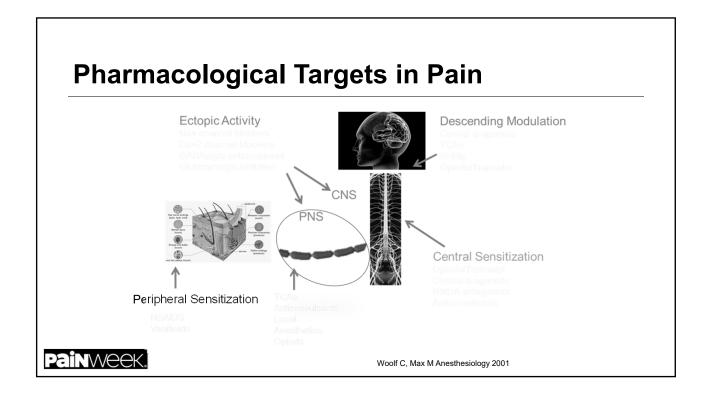
CTB = cholera toxin B


Central Sensitization:

Neuroplasticity in Spinal Cord Processing


- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate/NMDA receptors activity
 - · Reduced threshold for activation
 - · Increased availability of glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation—excitatory/Inhibitory neurotransmitters
 - Decreased tone—descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
 - Changes in the thalamus and primary somatosensory cortex⁴

Mannion RJ, Woolf CJ: Clin J Pain. 2000;16(3):S151-S153.
 Ossipov MH, et al. Ann NY Acad Sci. 2000;909:12-24.
 Wieseler-Frank J, et al. Neurosignals. 2005;14:166-174.
 Guilbaud G, et al. Exp Brain Res. 1992;92:227-245.

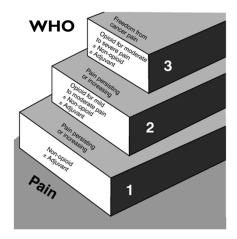

Analgesics That Modify Pain Processes

- Transduction
 - NSAIDs
 - Antihistamines
 - Membrane stabilizing agents
 - Local anesthetic cream
 - Opiods
 - Bradykinin & Serotonin antagonists
- Transmission/Modulation
 - Spinal opiods
 - $-\alpha_2$ agonists
 - NMDA receptor antagonistis
 - NSAIDs
 - NO inhibitors
 - K+ channel openers

- Perception
 - Parenteral opiods
 - $-\alpha_2$ agonists
 - General anesthetics
- Conduction
 - Local anesthetics
 - Peripheral nerve, plexus, epidural block

The Chronic Pain Armamentarium

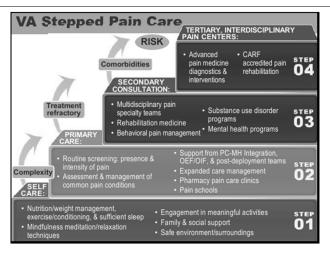
Nonopioids


- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids

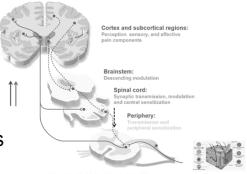
- Mu-opioid agonists
- Mixed agonist-antagonists

Adjuvant analgesics


- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

JC Ballantyne Oncologist 2003:8(6):567-75. © AlphaMed Press; WHO. 2005.

VA DoD Stepped Pain Care Model



PCSS-O Webinar Implementation of the National Pain Strategy and Safer Opioid Prescribing: A Military Perspective, Buckenmaier C (COL) ret, Aug 24, 2016 JAMA Intern Med. 2015;175(5):682-689. doi:10.1001/jamainternmed.2015.97

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- ■TCAs
- ■SNRIs
- Topicals
- Muscle relaxants
- Opioids

Nonopioids: Acetaminophen

Example

-Acetaminophen

Mechanism of action

- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production;
 no anti-inflammatory or antirheumatic activity

FDA Warning

- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome and toxic epidermal necrolysis

Nonopioids: NSAIDs

Examples

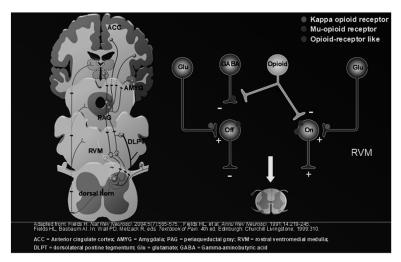
 Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)

Mechanism of action

- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- -Inhibition of cyclooxygenase and prostaglandin production
- -Inhibition of leukotriene B4 production
- Lipoxins (signaling resolution of inflammation)

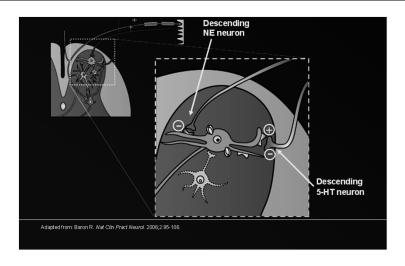
Opioids

Examples

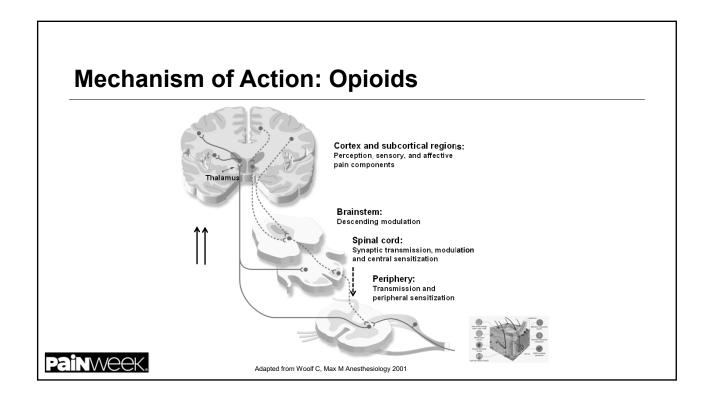

 Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of action

- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects



Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response



Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Adjuvant Analgesics: Tricyclic Antidepressants

Examples

- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action

- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability)
 - cardiotoxic (overdose)

TCAs and SNRIs Pharmacological Properties Sentation rousphaphine reuptake shibition Mechanism of action Receptor blockade Re

SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples

-Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline *Mechanism of action*

-Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Serotonin

- International Union of Pure and Applied Chemistry nomenclature
 - 5-Hydroxytryptamine (5-HT)
 - Monoamine neurotransmitter, biochemically derived from tryptophan
 - Receptors are a group of G protein-coupled receptors (<u>GPCRs</u>) and ligand-gated ion channels (<u>LGICs</u>) found in the <u>central</u> and <u>peripheral</u> nervous systems

Serotonin/5-HT Receptors

Family	Type	Mechanism	Potential
5-HT ₁	G _i /G _o -protein coupled.	Decreasing cellular levels of cAMP.	Inhibitory
5-HT ₂	Gq/G11-protein coupled.	Increasing cellular levels of IP3 and DAG.	Excitatory
5-HT3	Ligand-gated Na ⁺ and K ⁺ cation channel.	Depolarizing plasma membrane.	Excitatory
5-HT4	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT5	G _i /G _o -protein coupled. ^[4]	Decreasing cellular levels of cAMP.	Inhibitory
5-HT6	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT7	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory

http://en.wikipedia.org/wiki/5-HT_receptor

Serotonin/5-HT Receptors (cont'd)

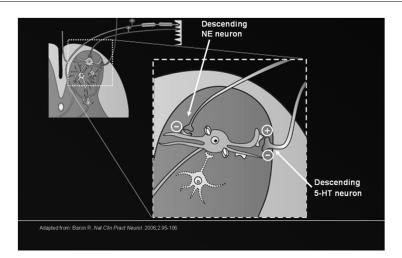
- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile erection
 - Pupil dilatation

- 5-HT1a (cont)
 - Respiration
 - Sexual behavior
 - Sleep
 - Sociability
 - Thermoregulation
- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood

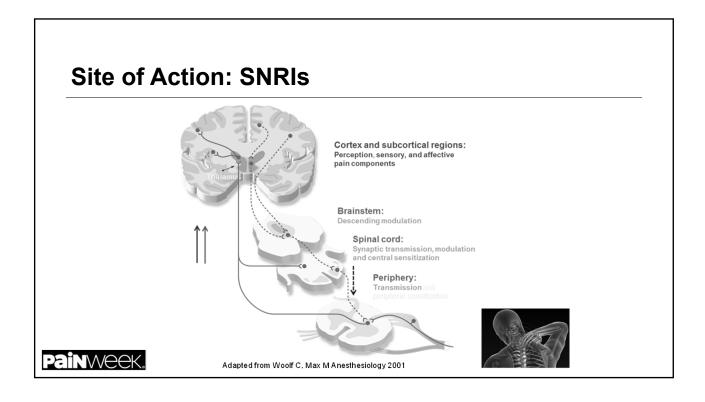
http://en.wikipedia.org/wiki/5-HT_receptor

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

Examples


-Duloxetine, milnacipran, and venlafaxine

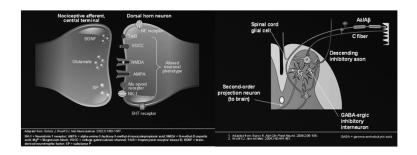
Mechanism of action


- -Block reuptake of 5-HT and NA
 - Better tolerated, lower tendency for drug-drug interactions, better overdose safety

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Adjuvant Analgesics: Antiepileptics

Examples


 Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- -Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca+ +)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Binds the $\alpha 2\delta$ subunit of voltage gated Ca+ channels, inhibit NT release

Site of Action: Antiepileptics

Adjuvant Analgesics: Topicals

Examples

- Lidocaine patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action

- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Muscle Relaxants: Spasmolytics

- Enhancing the level of inhibition
 - Mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation
- Common examples
 - Cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (benzodiazepine)
- Common adverse effects
 - Sedation, lethargy & confusion (cyclobenzaprine), dependence (carisopradol)

Case Study

- 54-year-old with 3 year history of neck, shoulder, and upper extremity pain following a lifting injury
 - Current medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Robaxin
 - Tapentadol
 - · Acetaminophen and propoxyphene
 - Zolpidem
 - · Diclofenac topical
 - Acetaminophen

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 - Tailoring treatment based on the individual patient and pain type
- Do not forget to look for the spear

