Stem Cells & Regenerative Medicine

Jay Joshi, MD, DABA, DABA-PM, FABA-PM

Disclosures

- None
Outline

- Review the overview of inflammation
- Define regenerative medicine
- Review the history of stem cells
- Differentiate different types of stem cells
- Discuss autologous stem cells
- Discuss non-autologous stem cells
- Compare non stem cell regenerative products

Pain is the First Sign of Inflammation

- Inflammation can be provoked by injuries caused by physical, chemical, and biologic agents
- Classic signs of inflammation are pain, heat, redness, swelling, and loss of function
- Impact of Pain:
 - Delay healing
 - Decrease appetite
 - Increase stress
 - Disrupt sleep and concentration
Non-resolving “Inflammation”

Evolution of CNS and Immune System
What is Regenerative Medicine?

- Regenerative medicine is a branch of medicine that deals with the process of replacing, repairing, and restoring normal tissue and function.
- Regenerative medicine also includes the possibility of growing tissues and organs in the laboratory and implanting them when the body cannot heal itself.
- Regenerative medicine involves stem cells and growth factor products.

Regenerative Medicine Therapies

<table>
<thead>
<tr>
<th>Healing Environment</th>
<th>Cellular Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIDS</td>
<td>Lipoaspirate Concentrate</td>
</tr>
<tr>
<td>Steroids</td>
<td>Bone Marrow Aspirate Concentrate</td>
</tr>
<tr>
<td>Synthetic Hyaluronic Acid</td>
<td>Umbilical Cord Blood</td>
</tr>
<tr>
<td>Platelet Rich Plasma (PRP)</td>
<td>Umbilical Cord Mesenchymal Stem Cells (MSC)</td>
</tr>
<tr>
<td>Amniotic Fluid Liquid Suspension</td>
<td></td>
</tr>
<tr>
<td>Amniotic Fluid + ECM Liquid Suspension</td>
<td></td>
</tr>
<tr>
<td>Wharton’s Jelly Liquid Suspension</td>
<td></td>
</tr>
</tbody>
</table>
Platelet-rich plasma (PRP) is defined as "autologous blood with concentrations of platelets above baseline levels, which contains at least seven growth factors"

- PRP is taken directly from a patient's own blood and then injected into the affected area
- PRP contains growth factors that trigger localized inflammation, collagen production, and other regenerative processes
- Used since 1987

PRP Advantages and Disadvantages

- **Advantages**
 - Autologous
 - Relatively cheap
 - Can be reproducible geographically

- **Disadvantages**
 - Side effects may occur, such as swelling at the injection site, increased pain and stiffness, and infection
 - Unwanted products, such as white blood cells, certain cytokines, inflammatory cells, and infections can exist in the PRP
PRP Advantages and Disadvantages

- Disadvantages (continue)
 - Many questions still exist, such as:
 - Indications, i.e. when should this treatment be used?
 - If it is an effective treatment for osteoarthritis, should it be used in the early stages of osteoarthritis or only when all other options are exhausted?
 - What are the optimal concentrations of platelets and white blood cells?
 - How much platelet-rich plasma should be injected?
 - Do certain additives, such as thrombin, make the PRP more effective?
 - When and with what frequency should injections be given? Is one injection enough?
 - What is the best rehabilitation protocol to use after PRP injection?

Brief History of Stem Cells

- Adult stem cell research began about 40 years ago
- Stem cell discoveries in 1960s:
 - Bone marrow contains 2 populations of stem cells
 - Hematopoietic stem cells – forms all blood cell types
 - Bone marrow stromal cells – mixed cell population that generates bone, cartilage, fat and fibrous connective tissue
 - Rat brain contains two regions of dividing cells, which become nerve cells
- Stem Cell Discoveries in the 1990s
 - Neural stem cells are able to generate the brain's three major cell types:
 - Astrocytes, Oligodendroglial cells, Neurons
Brief History of Stem Cells

- 1998 - Researchers first extract stem cells from human embryos
- 1999 - First Successful human transplant of insulin-making cells from cadavers
- 2001 - President Bush restricts federal funding for embryonic stem-cell research
- 2002 - California ok stem cell research
- 2004 - Harvard researchers grow stem cells from embryos using private funding
- 2004 - Ballot measure for $3 Billion bond for stem cells
- 2009 - Rabbit umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence hundred days post- tumor cell inoculation
- 2013-2017 - National Pain Centers has Multiple Firsts with Autologous and Non-Autologous Stem Cell products

Types of Stem Cells

<table>
<thead>
<tr>
<th>Stem cell type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totipotent</td>
<td>Each cell can develop into a new individual</td>
<td>Cells from early (1-3 days) embryos</td>
</tr>
<tr>
<td>Pluripotent</td>
<td>Cells can form any (over 200) cell types</td>
<td>Some cells of blastocyst (5 to 14 days)</td>
</tr>
<tr>
<td>Multipotent</td>
<td>Cells differentiated, but can form a number of other tissues</td>
<td>Fetal tissue, cord blood, and adult stem cells</td>
</tr>
</tbody>
</table>
Potential Uses of Stem Cells

- Basic research – clarification of complex events that occur during human development & understanding molecular basis of cancer
- Biotechnology (drug discovery & development) – stem cells can provide specific cell types to test new drugs
- Cell based therapies:
 - Regenerative therapy
 - Stem cells in gene therapy
 - Stem cells in therapeutic cloning
 - Stem cells in cancer

Homologous Cell and Tissue Products-HCT/Ps

- In 1980’s the FDA asserted authority of human tissue
- In 1993 the FDA created two pathways for regulating homologous tissue and cell products by statute with Part 1270 of Title 21, CFR (Codes of Federal Regulations)
- Section 361: Minimally manipulated tissues and cells, intended for homologous use only, and not combined with another article, with some exceptions
 - HCT/Ps labs are accredited by American Association of Tissue Banks (AATB)
- Section 351: Biological products derived from living material– human, animal or microorganism – applicable to the prevention, treatment or cure of a disease
 - These products meet the definition of a Therapeutic Biologic Application (BLA)
 - Regulated by the FDA Center for Drug Evaluation and Research (CDER)
Autologous Pros and Cons

Pros
- Known source of MSCs
- Reduced risk of rejection or inflammation
- Reduced potential for bacteria or virus transmission

Cons
- Requires a surgical procedure
- Additional capital, disposable, surgical and time costs
- Potential morbidity complications
- Low concentrations
 - Lipoaspirate 4,500 – 450,000 MSCs per CC
 - BMAC – 30 – 300 MSCs per CC

Current Autologous Therapies

Adipose Derived Adult MSCs
- Adult stromal cells intended for regenerative therapy can be isolated from the patient's adipose tissue
- Mesenchymal stem cells may differentiate into the cells that make up bone, cartilage, tendons, and ligaments, as well as muscle, neural and other progenitor tissues, they have been the main type of stem cells studied in the treatment of diseases affecting these tissues
- The number of stem cells transplanted into damaged tissue may alter efficacy of treatment
- It takes approximately 60cc's of adipose to obtain 1cc with over a million cells.
Current Autologous Therapies

Bone Marrow Aspirate Concentrate (BMAC)
- Marrow stromal cells have been used for a while in orthopedics (i.e. knee microfracture surgery)
- BMAC produces a very dilute MSC population but still show promise for joint repair
- BMAC are usually transferred with growth factors for success
- Unknown which component is more efficacious

Non-Autologous Pros and Cons

Pros
- High concentrations of MSCs
 - Umbilical Cord 2 million per CC
- Epigenetically young cells
- Quick, easy and reproducible
- No capital, surgical or time costs
- No known complications

Cons
- Potential for bacteria or virus transmission
 - Less than blood transfusion
 - Logistics and handling considerations
 - Products must be shipped and stored -200° C
Allogenic Available Products (HCT/Ps)

- Umbilical Cord Derived MSCs
 - HCT/P product with the potential to replace Lipoaspirate and Bone Marrow Aspirate Concentrate products
- Umbilical Cord Tissue Matrix
 - Injectable matrix rich in HA, Cytokines, Growth Factors and Proteins
- Amniotic Liquid Suspension
 - Injectable matrix rich in HA, Cytokines, Growth Factors and Proteins
- Amniotic Membrane
 - Tissue product used extensively for wound management, burns and soft tissue repair

Wharton’s Jelly

- Wharton’s Jelly is a mucous connective tissue within the umbilical cord, which originates in the extraembryonic mesoderm and is composed of myofibroblast-like stromal cells, collagen fibers, proteoglycans, and has very high concentrations of hyaluronic acid and chondroitin sulfate.
Mesenchymal Stem Cells Derived from Wharton’s Jelly

- Wharton’s Jelly-derived mesenchymal stem cells (WJ-MSC) have the following advantages
 - About 131 million births worldwide annually provide a large supply
 - There is no need for invasive harvesting methods
 - Their rate of proliferation is more than other sources
 - They can be collected easily at the time of child birth
 - They are not associated with ethical concerns
 - They are immune privileged
 - They have non-tumorigenic properties

Benefits of Mesenchymal Stem Cells

- Their potential to migrate to sites of inflammation caused by tissue injury
- Their potential to differentiate into different cell types
- Their potential to release different bioactive molecules that can stimulate the recovery of injured cells
- Their ability to prevent inflammation and accomplish immunomodulatory functions
Cryopreservation of Human MSC for Clinical Use

- For cells to remain viable, they must be stored at -200° C.

P. Mazur, American Journal of Physiology - Cell Physiology Sep 1984, 247 (3) C125-C142

Umbilical Cord Blood

- Umbilical cord blood derived allografts have been recently introduced with claims of millions of cells per milliliter of product
- Cord blood will not yield therapeutic numbers of MSCs unless the blood samples from many donors are pooled or the MSCs from a single donor are expanded in culture (Divya, et al., 2012)
- The FDA strictly forbids both procedures for CFR 1271 section 361 HCT/Ps as this makes the product "more than minimally manipulated."
- The only other explanation for the claim of millions of cells in these products is that these companies are using Peripheral Blood Mononuclear Cells (PBMC, hematopoietic cells, CD34+)
- Processing is accomplished by ficoll or hetastarch and will yield hundreds of millions of cells, however, only a small fraction of those cells would be considered stem cells (either hematopoietic or MSCs)
Umbilical Cord Blood vs. Umbilical Cord Matrix

- Hematopoietic Stem Cells are the most commonly cryopreserved stem cells, usually for autologous applications
 - Umbilical cord blood differentiate into blood cells
- Lining Stem Cells are isolated from the umbilical cord lining
 - Committed to an epithelial lineage.
- Mesenchymal Stem Cells are isolated from the umbilical cord tissue stroma (Wharton’s Jelly)
 - Multipotent in nature and can differentiate into specialized cells from the three germ layers
- White/Blood Cells are not defined as stem cells
 - Commonly found in Umbilical Cord Blood products and could cause potential issues with the donor recipient

Umbilical Cord Blood Product Concerns

- Graft-versus-host disease (GVHD)
 - Can affect many different parts of the body including the skin, eyes, mouth, stomach, and intestines
- Occurs because of differences between the immune system of the host’s body and the donated cells
- Types of GVHD
 - ACUTE GVHD: Usually develops in the first 3 months and affects the skin, stomach, intestines, and liver
 - CHRONIC GVHD: Usually develops in 3-6 months
Amniotic Membrane

- Amniotic Membrane (AM) is the inner layer of the placenta that surrounds the baby during pregnancy
- AM is a universal transplant
- Unique structural and compositional properties that facilitate natural wound healing
- AM Allograft is composed of a complex extracellular matrix that is dehydrated and terminally sterilized
 - Decellurized dehydrated human amniotic membrane (ddHAM)
- It is derived from the placentas of normal, full term pregnancies

Amniotic Fluid

- Amniotic fluid can be used to increase the volume of lubricating and shock absorbing fluid in joints
- Prevents the formation of new adhesions after closed manipulation of joints
- Induce immune tolerance and aids wound healing
- Amniotic fluid has cosmetic applications, specifically as an anti-wrinkle agent
- Amniotic fluid contains cytokines, hyaluronic acid, various proteins, and growth factors
Cell Differentiation Equipment

- The most common methods to characterize cells include:
 - Cell Counter
 - Flow Cytometry
 - Cell Expansion

Differentiation Between Cell Types

- Flow Cytometry
 - The International Society of Cellular Therapy (ISCT) recommends use of Flow Cytometry to identify cell types by using specific markers
- The markers that need to be present to help identify MSCs include
 - CD73
 - CD90
 - CD105
- The markers that identify Hematopoietic Stem Cells, White/Blood and Lining Cells include
 - CD14
 - CD34
 - CD45
Research Growth

Challenges to Regenerative Medicine

- FDA restrictions
- Insurance coverage
- Physician variability
- Product variability
- False claims
- Counterfeit services and products
References

- Johnson HL. Observation on the prevention of post operative peritonitis and abdominal adhesions. Surg Gynac Obstet. 1927;XLV:612
DARN IT, THOR! YOU LEFT THE STEM CELLS SITTING OUT TOO LONG! NOW THEY'RE NO GOOD!!