Pain Pathways Made Simple

David M Glick, DC, DAAPM, CPE

Disclosures

- Nothing to Disclose
Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Classification of Pain

- Good pain vs. Bad Pain

Clinical Pearl
Good Pain

- **Nociceptive Pain**: Purposeful Pain
 - **Eudynia** - being pain linked to normal tissue function or damage
 - Non-maldynic Pain
 - Adaptive

Bad Pain

- **Neuropathic Pain**: Non-purposeful Pain
 - **Maldynia** - pain linked to disorder, illness or damage
 - i.e. may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS
Pain Mechanisms

General Anatomy of Pain

- Cortex and subcortical regions: Perception, sensory, & affective pain components
- Brainstem: Descending modulation
- Spinal cord: Synaptic transmission, modulation & central sensitization
- Periphery: Transmission & peripheral sensitization

Pain Roadmap: Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- Adapts or changes in response to function – “Neuroplasticity”

Common Types of Pain

- Nociceptive pain
 - Noxious stimuli: Heat, Cold, Mechanical force, Chemical irritants
 - Pain pathway: Spinal cord, Nociceptor sensory neuron
 - Pain type: Adaptive, high-threshold pain, Early warning system (protective)

- Inflammatory pain
 - Pain pathway: Macrophage, Mast cell, Neutrophil, Granulocyte, Tissue Damage
 - Pain type: Adaptive, low-threshold pain, Promotes repair (protective)

- Neuropathic pain
 - Pain pathway: Neural lesion, Positive and negative symptoms
 - Pain type: Maladaptive, low-threshold pain, Disease state of nervous system

- Functional pain
 - Non-Neuropathic
 - Pain pathway: Dysfunctional pain, Normal peripheral tissue and nerves
 - Pain type: Maladaptive, low-threshold pain, Disease state of nervous system

Nociceptive vs Neuropathic Pain

Nociceptive
- Arthritis
- Mechanical low back pain
- Post-operative pain
- Sickle cell crisis
- Sports/Exercise injury

Mixed
- Fibromyalgia
- Headache
- Low back pain
- Myofascial pain syndrome
- Skeletal muscle pain

Neuropathic
- Neuropathic low-back pain
- Polyneuropathy (diabetic, HIV)
- Postherpetic neuralgia
- Trigeminal neuralgia

Pain Pathway Steps

Adapted from Schott J, Woolf CJ. Nat Neuroscience, 2002,5:1062-1067
Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - receptors activated directly by stimuli
 - injury/inflammatory response

How is Pain Transduced?

- Nociception
 - Mechanical
 - Thermal
 - Chemical

- Mediators
 - Prostaglandins
 - Leukotrienes
 - Substance P
 - Histamine
 - Bradykinin
 - Serotonin
 - Hydroxyacids
 - Reactive oxygen species
 - Inflammatory cytokines and chemokines
Conduction

- Conduction impulses from primary nociceptors to the spinal cord (dorsal horn) along the peripheral nerve.

Primary Nociception

- **A-delta fibers**
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- **C-fibers**
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - 0.5-2.0 m/sec
 - Cross sensitized
 - Small diameter
Peripheral Pain Nociceptors

\(A\beta\) - muscle spindle secondary endings, touch, and kinesthesia.

\(A\delta\) - pain, temperature, crude touch, and pressure.

Transmission & Modulation

Ascending nociceptive pathways
Transmitting nociceptive impulses from the dorsal horn to surraspinatld targets

- Fast (green) Neospinalthalamic
- Slow (yellow) Paleospinalthalamic

Descending inhibitory tracts (blue)
Increase or decrease volume control of incoming nociceptive signals reaching the brain

- 5-HT - Serotonin
- NE - Norepineherine

How is Pain Conducted and Transmitted?

- **Excitatory Transmitters**
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, Glutamate

- **Inhibitory Transmitters (Descending Inhibitory Pathways)**
 - GABA
 - Glycine
 - Somatostatin
 - μ agonists

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (Increased Pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it.
How Acute Pain Becomes Chronic

- Peripheral Sensitization
 - Tissue damage releases sensitizing “soup” of cytokines & neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing

- Central Sensitization – Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia

Definitions

- **Hyperalgesia**
 - Lowered threshold to different types of noxious stimuli

- **Allodynia**
 - Painful response to what should normally be non-painful stimuli
Neuroplasticity in Pain Processing

Neuroplasticity in Peripheral Pain Transmission
Peripheral Sensitization

- Activation
 - “Wind up” of dorsal horn nociceptors
- Modulation
 - Excitatory/Inhibitory neurotransmitters
- Decreased central inhibition of pain transmission
 - NE/5HT

Prime role in chronic pain, particularly neuropathic pain
Definitions

- **Wind Up**
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process 1,2,3,4
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons 2,3

Central Sensitization

![Diagram of afferent first order neuron and dorsal horn neuron](image-url)

NI:1 = Neuronal inhibitor 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TRP = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P

Adapted from Scholz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067
Central Sensitization

Key Influences upon signal propagation

- Excitatory Neurotransmitters
 - Substance P, CGRP, Glutamate
- NMDA Channel Activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/Serotonin (SHT)
- Mu opioid receptor

Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing

Adapted from Scholz J, Wullf C. Nat Neuroscience. 2002;5:1062-1067
Neuroplasticity: Neural Reorganization

Neuroplasticity: Cross Talk

CTB = cholera toxin B
Central Sensitization:
Neuroplasticity in Spinal Cord Processing

- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate / NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of Glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation – Excitatory/Inhibitory neurotransmitters
 - Decreased tone - descending inhibitory pathways
 - Activation/migration of glial cells into the spinal cord
 - Changes in the thalamus and primary somatosensory cortex

Brain Regions Involved in Pain Processing

Somatosensory cortex
Localization

Thalamus
Routing

Hippocampus
Pain memory/Learning

Amygdala
Emotional Aspect

Prefrontal cortex
Motor planning

Anterior cingulate cortex
Context/Situation of pain

Insular cortex
Pain judged to the degree and where pain is imagined

Analgesics That Modify Pain Processes

- **Perception**
 - Parenteral opioids
 - α_2 agonists
 - General anesthetics

- **Conduction**
 - Local anesthetics
 - Peripheral nerve, plexus, epidural block

- **Transduction**
 - NSAIDs
 - Antihistamines
 - Membrane stabilizing agents
 - Local anesthetic cream
 - Opioids
 - Bradykinin & Serotonin antagonists

- **Transmission/Modulation**
 - Spinal opioids
 - α_2 agonists
 - NMDA receptor antagonists
 - NSAIDs
 - NO inhibitors
 - K+ channel openers

Pharmacological Targets in Pain

- Ectopic Activity
 - Neuronal blockers
 - Calcium channel blockers
 - GABAergic enhancement
 - Glutamnergic inhibition

- Descending Modulation
 - Central α-agonists
 - TCA
 - SNRIs
 - Opioids/Tramadol

- Peripheral Sensitization
 - NSAIADS
 - Steroids
 - Anticonvulsants

- Central Sensitization
 - Opioids/Tramadol
 - Central α-agonists
 - NMDA antagonists
 - Anticonvulsants

Woel C, Max M Anesthesiology 2001
The Chronic Pain Armamentarium

Nonopioids
- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids
- Mu-opioid agonists
- Mixed Agonist-antagonists

Adjuvant analgesics
- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

VA DoD Stepped Pain Care Model

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDs
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle Relaxants
- Opioids

Nonopioids: Acetaminophen

Example
- Acetaminophen

Mechanism of Action
- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

FDA Warning
- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome & toxic epidermal necrolysis
Nonopioids: NSAIDs

Examples
- Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)

Mechanism of Action
- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- Inhibition of leukotriene B4 production
- Lipoxins (signaling resolution of inflammation)

Opioids

Examples
- Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of Action
- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects
Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response

Modulation of Central Sensitization by 5-HT & NE Descending Pathways
Mechanism of Action - Opioids

Adjuvant Analgesics: Tricyclic Antidepressants

Examples
- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action
- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability),
 - cardiotoxic (overdose)
SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples
– Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline

Mechanism of action
– Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!
Serotonin

- International Union of Pure and Applied Chemistry nomenclature
- 5-Hydroxytryptamine (5-HT)
- monoamine neurotransmitter, biochemically derived from tryptophan
- receptors are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) found in the central and peripheral nervous systems

Serotonin/5-HT Receptors

<table>
<thead>
<tr>
<th>Family</th>
<th>Type</th>
<th>Mechanism</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT<sub>1</sub></td>
<td>G<sub>i</sub>/<G<sub>i</sub> protein coupled.</td>
<td>Decreasing cellular levels of cAMP.</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT<sub>2</sub></td>
<td>G<sub>i</sub>/<G<sub>i</sub> protein coupled.</td>
<td>Increasing cellular levels of IP<sub>3</sub> and DAG</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT<sub>3</sub></td>
<td>Ligand-gated Na<sup>+</sup> and K<sup>+</sup> cation channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HT<sub>4</sub></td>
<td>G<sub>q</sub>-protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT<sub>5</sub></td>
<td>G<sub>i</sub>/<G<sub>i</sub> protein coupled.</td>
<td>Decreasing cellular levels of cAMP.</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT<sub>6</sub></td>
<td>G<sub>q</sub>-protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT<sub>7</sub></td>
<td>G<sub>q</sub>-protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/5-HT_receptor
Serotonin/5-HT Receptors

- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart Rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile Erection
 - Pupil Dilatation

- 5-HT1a (cont)
 - Respiration
 - Sexual Behavior
 - Sleep
 - Sociability
 - Thermoregulation

- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

Examples
- duloxetine, milnacipran, and venlafaxine

Mechanism of action
- Block reuptake of 5-HT and NA
 - (better tolerated, lower tendency for drug-drug interactions, better overdose safety)

http://en.wikipedia.org/wiki/5-HT_receptor
Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Site of Action - SNRIs

Adapted from Woolf C. Max M Anesthesiology 2001
Adjuvant Analgesics: Antiepileptics

Examples

- Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca+ +)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Binds the α2δ subunit of voltage gated Ca+ channels, inhibit NT release

Site of Action - Antiepileptics
Adjuvant Analgesics: Topicals

Examples
- Lidocaine Patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action
- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting
Muscle Relaxants - Spasmolytics

- Enhancing the level of inhibition
 - mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation.
- Common examples
 - cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (diphenhydramine)
- Common adverse effects
 - sedation, lethargy & confusion (cyclobenzaprine), dependence (carisoprodol)

Case Study

- 54 year-old with three year history of neck, shoulder and upper extremity pain following a lifting injury
 - Current Medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Methocarbamol
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen
Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 - Tailoring treatment based on the individual patient and pain type
- Do not forget to look for the spear

[Image]: #