

Pain Pathways Made Simple

David M Glick, DC, DAAPM, CPE

Disclosures

■ Nothing to Disclose

Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Classification of Pain

■Good pain vs. Bad Pain

Clinical Pearl

Good Pain

- Nociceptive Pain: Purposeful Pain
 - Eudynia being pain linked to normal tissue function or damage
 - -Non-maldynic Pain
 - -Adaptive

Bad Pain

- Neuropathic Pain: Non-purposeful Pain
 - Maldynia pain linked to disorder, illness or damage
 - i.e may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS

Pain Mechanisms

Adapted from Nature Reviews – Neuroscience, Stephen McMahon & David Bennett, 2007.

Pain Roadmap:

Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- Adapts or changes in response to function – "Neuroplasticity"

Gardner EP, et al. In: Kandel E, et al, eds. *Principles of Neural Science*. 4th ed. McGraw-Hill Medical; 2000; chapters 21-23.

Common Types of Pain Noxious stimuli Heat Cold lechanical force Nociceptive pain Adaptive, high-threshold pain Early warning system (protective) cord Nociceptor sensory neuron Inflammatory pain Adaptive, low-threshold pain Promotes repair (protective) Neuropathic pain Neural lesion Peripheral nerve Maladaptive, low-threshold pain Normal peripheral Dysfunctional pain tissue and nerves **Functional pain** Non-Neuropathic Non-inflammatory Adapted from: Woolf CJ. Ann Intern Med. 2004;140:441-451.

Nociceptive vs Neuropathic Pain

Nociceptive Arthritis Mechanical low back pain Post-operative pain Sickle cell crisis Sports/Exercise injury Mixed Fibromyalgia Headache Low back pain Myofascial pain syndrome Skeletal muscle pain Neuropathic Neuropathic low-back pain Polyneuropathy (diabetic, HIV) Postherpetic neuralgia Trigeminal neuralgia

Portenoy RK, Kanner RM. In: Portenoy RK, et al, eds. Pain Management: Theory and Practice. Philadelphia, PA: FA Davis Company; 1996:4. Galer BS, Dworkin RH. A Clinical Guide to Neuropathic Pain. Minneapolis, MN: McGraw-Hill Companies Inc; 2000:8-9.

Pain Pathway Steps Cortex Perception Cortex and subcortical regions: sensory, and affective pain components - Behavioral/Limbic **Transduction Transmission** Peripheral nociceptor converts input to electric Spinal Cord/ Ascending Spinal Pathways Conduction Peripheral nerve synapsing in the dorsal horn PAG = periaqueductal grey RVM = rostral ventromedial medulla Painweek Adapted from Scholtz J. Woolf CJ. Nat Neuroscience. 2002.5:1062-1067

Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical, thermal or chemical stimuli into an electric charge
- Involves
 - receptors activated directly by stimuli
 - injury/inflammatory response

Adapted from Dougherty PM, et al. Neurochemistry of somatosensory and pain processing. In: Benzon H, et al, eds. Essentials of Pain Medicine. Philadelphia, PA; Saunders; 2011: chapter 2.

How is Pain Transduced?

- Nociception
 - Mechanical
 - Thermal
 - Chemical

- Prostaglandins
- LeukotrienesSubstance P
- Histamine
- Bradykinin
- Serotonin
- Hydroxyacids
- Reactive oxygen species
- Inflammatory cytokines and chemokines

Conduction

• conduction impulses to the spinal cord (dorsal horn) along the peripheral nerve.

Painweek

Primary Nociception

- A-delta fibers
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- C-fibers
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

Painweek

Peripheral Pain Nociceptors

Aβ - muscle spindle secondary endings, touch, and kinesthesia.

Aδ - pain, temperature, crude touch, and pressure.

Bashbaum A, Jessell T, The perception of Pain, In Kendal E, Schwartz J, Principles of Neural Science 4th ed, New York, McGraw Hill, 2000, 482-483.

Transmission & Modulation

Adapted from Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. *Neuron.* 2012; 23;73(4):638-652.

How is Pain Conducted and Transmitted?

IGLION

- Excitatory Transmitters
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, Glutamate
- Inhibitory Transmitters (Descending Inhibitory Pathways)
 - GABA
 - Glycine
 - Somatostatin
 - $-\alpha_2$ agonists

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body's pain inhibitory systems (Increased Pain)
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it.

How Acute Pain Becomes Chronic

- Peripheral Sensitization
 - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central Sensitization –Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia

Definitions

- Hyperalgesia
 - Lowered threshold to different types of noxious stimuli

Allodynia

 Painful response to what should normally be non-painful stimuli

Peripheral Sensitization

Central Sensitization

- Activation
 - "Wind up" of dorsal horn nociceptors
- Modulation
 - Excitatory/Inhibitory neurotransmitters
- Decreased central inhibition of pain transmission
 - NE/5HT

Prime role in chronic pain, particularly neuropathic pain

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process 1,2,3,4
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons 2,3
 - Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science (Fourth Edition).
 New York: McGraw Hill (Health Professions Division). 2000;472-491.
 Millan MJ. Progress in Neurobiology 1999;57:1-164.
 Dickenson AH. Brit J Anaesthesia 1995;75:193-200.

Painweek

Central Sensitization

Afferent first order neuron

Dorsal horn neuron

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Central Sensitization

Dorsal Horn

BONF VIOCE

Cadamata **

NOCA

Assess

Services

Assess

Services

Assess

Services

Assess

Services

Key Influences upon signal propagation

- · Excitatory Neurotransmitters
 - Substance P, CGRP, Glutamate
- NMDA Channel Activity
 - Glutamate binding
 - Altering channel activity
- · Descending inhibitory tracts
 - NE/Serotonin (5HT)
- · Mu opioid receptor

NK.1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = Nmethyl-0-aspartic acid; VGCC = voltage gated sodium channel; rika = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P; CRGP = Calcitonin gene related peptide

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing ^{1,2}

GABA-ergic inhibitory interneuron

Adapted from 1. Baron R. Mechanisms of disease: neuropathic pain-a clinical perspective. *Nat Clin Pract Neurology*. 2006;2:95-106.

2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. *Ann Int Med*. 2004;140:441-451.

Neuroplasticity: Neural Reorganization

PainWeek.

Neuroplasticity: Cross Talk

PainWeek.

CTB = cholera toxin B

Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes effecting glutamate / NMDA receptors activity
 - Reduced threshold for activation
 - · Increased availability of Glutamate
 - Increased influx of Na⁺/Ca⁺ (receptor open longer)
 - Modulation Excitatory/Inhibitory neurotransmitters
 - Decreased tone descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
 - Changes in the thalamus and primary somatosensory cortex⁴

Mannion RJ, Woolf CJ: Clin J Pain. 2000;16(3):S151-S153.
 Ossipov MH, et al. Ann NY Acad Sci. 2000;909:12-24.
 Wieseler-Frank J, et al. Neurosignals. 2005;14:166-174.
 Guilbaud G, et al. Exp Brain Res. 1992;92:227-245.

Brain Regions Involved in Pain Processing Somatosensory cortex Pain and emotion Localization **Thalamus** Prefrontal cortex Routing Motor planning Anterior cingulate cortex Context/Situation of pain Hippocampus Pain memory/Learning Insular cortex Pain judged to the Amygdala degree and where **Emotional Aspect** pain is imagined Apkarian AV et al. Eur J Pain 2005;9:463-484

Analgesics That Modify Pain Processes

- Transduction
 - NSAIDs
 - Antihistamines
 - Membrane stabilizing agents
 - Local anesthetic cream
 - Opiods
 - Bradykinin & Serotonin antagonists
- Transmission/ Modulation
 - Spinal opiods
 - $-\alpha_2$ agonists
 - NMDA receptor antagonistis
 - NSAIDs
 - NO inhibitors
 - K+ channel openers

- Perception
 - Parenteral opiods
 - $-\alpha_2$ agonists
 - General anesthetics
- Conduction
 - Local anesthetics
 - Peripheral nerve, plexus, epidural block

Pharmacological Targets in Pain

The Chronic Pain Armamentarium

Nonopioids

- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids

- Mu-opioid agonists
- Mixed Agonist-antagonists

Adjuvant analgesics

- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

JC Ballantyne Oncologist 2003:8(6):567-75. © AlphaMed Press; WHO. 2005.

VA DoD Stepped Pain Care Model

Painweek.

PCSS-O Webinar Implementation of the National Pain Strategy and Safer Opioid Prescribing: A Military Perspective, Buckenmaier C (COL) ret, Aug 24, 2016

JAMA Intern Med. 2015;175(5):682-689. doi:10.1001/jamainternmed.2015.97

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- ■TCAs
- SNRIs
- Topicals
- Muscle Relaxants
- Opioids

Nonopioids: Acetaminophen

Example

-Acetaminophen

Mechanism of Action

- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no antiinflammatory or antirheumatic activity

FDA Warning

- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome & toxic epidermal necrolysis

Nonopioids: NSAIDs

Examples

Acetylated (aspirin); nonacetylated (diflunisal);
 acetic acid (diclofenac); propionic acid
 (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone);
 ibuprofen, selective COX-2s (celecoxib)

Mechanism of Action

- Exhibit both peripheral and central effects;
 antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- -Inhibition of leukotriene B4 production
- Lipoxins (signaling resolution of inflammation)

Opioids

Examples

 Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of Action

- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects

Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Adjuvant Analgesics: Tricyclic Antidepressants

Examples

- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action

- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability),
 - cardiotoxic (overdose)

TCAs and SNRIs Pharmacological Properties

http://pharmacologycorner.com

SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples

-Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline

Mechanism of action

-Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Serotonin

- International Union of Pure and Applied Chemistry nomenclature
 - 5-Hydroxytryptamine (5-HT)
 - monoamine neurotransmitter, biochemically derived from tryptophan
 - receptors are a group of G protein-coupled receptors (<u>GPCRs</u>) and ligand-gated ion channels (<u>LGICs</u>) found in the <u>central</u> and <u>peripheral</u> nervous systems

Serotonin/5-HT Receptors

Family	Туре	Mechanism	Potential
5-HT ₁	G _i /G _o -protein coupled.	Decreasing cellular levels of cAMP.	Inhibitory
5-HT2	Gq/G11-protein coupled.	Increasing cellular levels of IP3 and DAG.	Excitatory
5-HT3	Ligand-gated Na+ and K+ cation channel.	Depolarizing plasma membrane.	Excitatory
5-HT4	Gs-protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT5	G _i /G _o -protein coupled. ^[4]	Decreasing cellular levels of cAMP.	Inhibitory
5-HT6	G ₈ -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HT7	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory

http://en.wikipedia.org/wiki/5-HT_receptor

Serotonin/5-HT Receptors

- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart Rate
 - Impulsivity
 - MemoryMood
 - 101000
 - Nausea
 - Nociception
 - Penile Erection
 - Pupil Dilatation

- 5-HT1a (cont)
 - Respiration
 - Sexual Behavior
 - Sleep
 - Sociability
 - Thermoregulation
- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood

http://en.wikipedia.org/wiki/5-HT_receptor

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

Examples

-duloxetine, milnacipran, and venlafaxine

Mechanism of action

- -Block reuptake of 5-HT and NA
 - (better tolerated, lower tendency for drug-drug interactions, better overdose safety)

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Site of Action - SNRIs Cortex and subcortical regions: Perception, sensory, and affective pain components Brainstem: Descending modulation Spinal cord: Spinal cord: Transmission, modulation and central sensitization Peripheral sensitization Adapted from Woolf C, Max M Anesthesiology 2001

Adjuvant Analgesics: Antiepileptics

Examples

 Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- -Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca+ +)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Binds the $\alpha 2\delta$ subunit of voltage gated Ca+ channels, inhibit NT release

Site of Action - Antiepileptics

Adjuvant Analgesics: Topicals

Examples

- Lidocaine Patch 5%, eutectic, mixture of lidocaine and prilocaine
- capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action

- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Muscle Relaxants - Spasmolytics

- Enhancing the level of inhibition
 - mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation.
- Common examples
 - cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (diphenhydramine)
- Common adverse effects
 - sedation, lethargy & confusion (cyclobenzaprine), dependence (carisopradol)

Case Study

- 54 year-old with three year history of neck, shoulder and upper extremity pain following a lifting injury
 - Current Medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Methocarbamol
 - Tapentadol
 - · Acetaminophen and propoxyphene
 - Zolpidem
 - · Diclofenac topical
 - Acetaminophen

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 - Tailoring treatment based on the individual patient and pain type
- Do not forget to look for the spear

