

Pain Pathways Made Simple

David M Glick, DC, DAAPM, CPE

1

Disclosures

Nothing to Disclose

Painweek.

2

Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Painweek.

	1
Olegaitication of Pain	
Classification of Pain	
■Good pain vs. Bad Pain	
Clinical Pearl	
Pain/Week.	
4	•
Good Pain	
Nociceptive Pain: Purposeful Pain Eudynia - being pain linked to normal tissue function or	
damage	
Non-maldynic Pain Adaptive	
Painweek	
5	
Bad Pain	
■ Neuropathic Pain: Non-purposeful Pain	
Maldynia - pain linked to disorder, illness or damage i.e may be abnormal, unfamiliar pain, assumed to be caused by	
dysfunction in PNS or CNS	
Polaryook	
Painweek.	

Pain Roadmap: Peripheral and Central Nervous System Landmarks • Physiologic process involving multiple areas of the nervous system • Bidirectional • Involves normal as well as pathological processes • A sensory experience associated with affective and cognitive responses • Dynamic (i.e. occurring in real time) • Adapts or changes in response to function — "Neuroplasticity"

Pathophysiologic Classification of Pain

- Nociceptive Purposeful pain
 Somatic or visceral linked to normal tissue function or commensurate with identifiable tissue damage
- Inflammatory Pain Usually involves tissue damage
- Innammatory Pain Usually involves tissue damage
 Localized chemical soup of inflammatory mediators
 Neuropathic Non-purposeful pain
 May be abnormal, unfamiliar pain, probably caused by dysfunction in PNS or CNS
 Functional Pain Dysfunctional pain
 Non-neuropathic, non-inflammatory, often ill defined

PainWeek, y changes

10

11

Peripheral Sensitization After injury, a peripheral nervous system neuron becomes abnormally sensitive to stimuli, resulting in either or both • Decreased threshold for activation • Increased rate of firing Mechanism of action* - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters - COX-mediated PGE2 release • These events are thought to be based on a number of changes at the cellular/molecular level, including changes in receptors and ion channels.

Primary Nociception - A-delta fibers - Small receptive fields - Thermal & mechanical - Myelinated - Rapidly conducting - 10-30 m/sec - Large diameter - C-fibers - Broad receptive fields - Polymodal - Unmyelinated - Slower conducting - 5-20 m/sec - Cross sensitized - Small diameter

Transmission & Modulation				
	Ascending nociceptive pathways Transmitting nociceptive impulses from the dorsal horn to surpaspinal targets fast (green) Neospinalthalamic slow (yellow) Paleospinalthalamic Descending inhibitory tracts (blue) Increased activation leads to a decrease in volume control of incoming nociceptive signals reaching the brain 5-HT - Serotonin - both excitatory & inhibitory* (may not lead to pain railei) NE - Norepinephrine - Inhibitory			
Pain Week.	 Adapted from Von Hehn CA, Basso R, Woolf CJ, Deconstructing the secognitic pain phenotype to reveal neural mechanisms. Neurol. 2012; 22;73(4):638-652. 			

Transmission & Modulation Inhibitory Transmitters (Descending Inhibitory Pathways) GABA Glycine Somatostatin au agonists Excitatory Transmitters Substance P Calcitonin gene related peptide Aspartate, Glutamate **Pain**week.

20

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 Neuronal structure
 Connections between neurons
 Quantity/properties of neurotransmitters, receptors, ion channels
 Decreases body's pain inhibitory systems (Increased Pain)
 Injury, inflammation, and disease are culprits
 Produces short-term and permanent changes
 Pivotal to the development of hypersensitivity of inflammatory pain
- Enables NS to modify its function according to different conditions or demands placed upon it.

Painweek.

How Acute Pain Becomes Chronic

- Peripheral Sensitization

 - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters

 COX-mediated PGE2 release

 Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central Sensitization —Resulting from noxious input to the spinal cord Resulting in hyperalgesia, & allodynia

Painweek.

22

Definitions

Hyperalgesia

Lowered threshold to different types of noxious stimuli

Allodynia

Painful response to what should normally be non-painful stimuli

<u>Painweek.</u>

23

Neuroplasticity in Pain Processing Painweek.

Neuroplasticity in Peripheral Pain Transmission

25

Peripheral Sensitization

26

Central Sensitization

- Activation
 "Wind up" of dorsal horn nociceptors
 Modulation
 Excitatory/Inhibitory neurotransmitters
 Decreased central inhibition of pain transmission
 NE/5HT

Prime role in chronic pain, particularly neuropathic pain

Painweek.

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process 1,2,3,4
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons 2,3

Painweek.

28

First Order Synapse - Dorsal Horn

Painweek.

29

Central Sensitization

- Excitatory Neurotransmitters Substance P, CGRP, Glutamate
- NMDA Channel Activity
 Glutamate binding
- Altering channel activity
 Descending inhibitory tracts
 NE/Serotonin (5HT)
- Mu opioid receptor

Painweek.

NE-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-bydrosy -E-methyle 6-inoxazolepropionic acid; NMDA = N methyl-0-aspartic acid; VECC = voltage paed sodium channel; Trike = tropomyonin receptor kinase k; BDMF = Brain Berlived ocerotropich Entric; FF = substraces F, CEGF = Calcrosin pene relates g pytide

Central Sensitization: Neuroplasticity in Spinal Cord Processing

- · Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:

 - Changes effecting glutamate / NMDA receptors activity
 Reduced threshold for activation
 Increased availability of Glutamate
 Increased influx of Nar/Car (receptor open longer)
 Modulation Excitatory/Inhibitory neurotransmitters
 Decreased tone descending inhibitory pathways²
 - Activation/migration of glial cells into the spinal cord³
- Changes in the thalamus and primary somatosensory cortex⁴

Painweek.

Mannion RJ, Woolf CJ: Clin J Pain. 2000;16(3);5151-5152. 2. Ossipov MH, et al. Ann NY Acad Sci. 2000;909:12-24
 Wieseler-Frank J, et al. Neurosignals. 2005;14:166-174. 4. Guilbaud G, et al. Exp Brain Rez. 1992;92:227-245.

34

35

Analgesics That Modify Pain Processes Iransmission/Modulation Spinal opioids Antihistamines Membrane stabilizing agents Local anesthetic cream NSAIDs Opioids Bradykinin & Serotonin antagonists Transduction ■ Transmission/Modulation Conduction Perception - Parenteral opioids - α2 agonists - General anesthetics <u>Pain</u>week.

Non-Pharmacologic Treatments Reliant Upon Pain Pathways

- Classic Neuromodulation (Implantable spinal and extraspinal)
- External devices (Transcutaneous)
 - -Quell (NeuroMetrix) Musculoskeletal Pain (neck, back, etc.)
 - $-{\sf Nerivio\ Migra\ (Theranica\ Bio\text{-}Electronics)} {\sf Acute\ Migraine}$
 - Cefaly (Cefaly US) Acute migraine without aura
 - Livia (iPulse Medical) Menstrual cramps
 - ActiPatch (BioElectronics) Musculoskeletal pain

Painweek.

38

The Chronic Pain Armamentarium Nonopioids - Acetaminophen - NSAIDs - COX-2 inhibitors Opioids - Mu-opioid agonists - Mixed Agonist-antagonists Adiuvant analogsics - Anticopressants - Anticopressants - Anticonvulsants - Topical agents/local anesthetics

VA DoD Stepped Pain Care Model

Painweek. PCSS-O Webinar Implementation of the National Pain Strategy and Safer Opioid Prescribing: A Military Perspective, Buckenmaier C (COL) ret, Aug 24, 2016

40

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- ■TCAs
- ■SNRIs
- Topicals
- Muscle Relaxants
- Opioids

Painweek.

41

Nonopioids: Acetaminophen

Example - Acetaminophen Mechanism of Action

- Inhibits prostaglandin production in CNS; antipyretic activity

 No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

 No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

- FDA Warning

 Potential severe liver damage if over-used

 Stevens-Johnson Syndrome & toxic epidermal necrolysis

Painweek.

Nonopioids: NSAIDs

Examples

-Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (metenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen, selective COX-2s (celecoxib)

- Mechanism of Action
 Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
 Inhibition of cyclooxygenase and prostaglandin production

 - -Inhibition of leukotriene B4 production
 -Lipoxins (signaling resolution of inflammation)

Painweek.

43

Opioids

Examples

- Examples

 Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

 Mechanism of Action

 Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord

 Activate descending pathways that modulate transmission in spinal cord

 - Activate describing partial states and affective pain Alter limbic system activity; modify sensory and affective pain

Painweek.

44

Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response

Painweek.

47

Adjuvant Analgesics: Tricyclic Antidepressants

Examples

- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline Mechanism of action
 - Reduction in action potential firing of sodium channel activity
 - Inhibition of reuptake of NE and 5-HT
 - Analgesia is independent of antidepressant function
 - High side effect profile (tolerability),

 cardiotoxic (overdose)

48

Painweek.

SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples

- -Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline Mechanism of action
 - -Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!

Painweek.

50

Serotonin

- International Union of Pure and Applied Chemistry nomenclature
 - 5-Hydroxytryptamine (5-HT)

 - monoamine neurotransmitter, biochemically derived from tryptophan
 receptors are a group of G protein-coupled receptors. (GPCBs) and ligand-gated ion channels (LGICs) found in the central and peripheral nervous systems

Painweek.

Serotonin/5-	HT R	eceptors
--------------	------	----------

Family	Type	Mechanism	Potential
5-HT ₁	G _l /G ₀ -protein coupled.	Decreasing cellular levels of cAMP.	Inhibitory
5-HT ₂	Gq/G11-protein coupled.	Increasing cellular levels of IP3 and DAG.	Excitatory
5-HT3	Ligand-gated Na ⁺ and K ⁺ cation channel.	Depolarizing plasma membrane.	Excitatory
5-HT4	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
5-HTs	G/G _o -protein coupled. ^[4]	Decreasing cellular levels of cAMP.	Inhibitory
5-HT ₆	G _s -protein coupled.	Increasing cellular levels of cAMP.	Excitatory
SHT	Gprotein combad	Increasing cellular levels of cAMP	Excitatory

Painweek.

52

Serotonin/5-HT Receptors

- 5.HT1a (Blood Ves/CNS)
 Addiction
 Aggression
 Anxiety
 Appetite
 BP
 Cardiovascular function
 Emesis
 Heart Rate
 Impulsivity
 Memory
 Mood
 Nausea
 Nociception
 Penile Erection
 Pupil Dilatation
- 5-HT5a & 5-HT6 (CNS)
 Locomotion
 Sleep
 Anxiety
 Cognition
 Learning
 Memory
 Mood http://en.wikipedia.org/wiki/5-HT_receptor

 5-HT1a (cont)
 Respiration
 Sexual Behavior
 Sleep
 Sociability - Thermoregulation

<u>Painweek.</u>

53

SNRIs (Serotonin/Noradrenaline Reuptake Inhibitors)

Examples

-duloxetine, milnacipran, and venlafaxine

Mechanism of action

- -Block reuptake of 5-HT and NA
 - (better tolerated, lower tendency for drug-drug interactions, better overdose safety)

Painweek.

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Painweek.

55

Site of Action - SNRIs Painweek.

56

Adjuvant Analgesics: Antiepileptics

-Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action

- -Suppress neuronal hyperexcitability via

 - Reducing neuronal influx of sodium (Na+) and calcium (Ca++)
 Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 Binds the α2δ subunit of voltage gated Ca+ channels, inhibit NT release

Painweek.

Site of Action - Antiepileptics Spinal cord glial cell C Fiber inhibitory axon GABA-ergic inhibitory interneuron Painweek.

58

Adjuvant Analgesics: Topicals

- -Lidocaine Patch 5%, eutectic, mixture of lidocaine and prilocaine
- capsaicin cream/patch
- Diclofenac (cream/liquid/gel/patch)

Mechanism of action

- Block sodium channels and inhibit generation of abnormal impulses by
- damaged nerves

 Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Painweek.

59

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Painweek.

Muscle Relaxants - Spasmolytics

- Enhancing the level of inhibition
- mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation.
- Common examples
 - cycloberaprine (TCA) methocarbamol, carisoprodol (barbiturate like effects), tizanidine (a-2 agonist), baclofen (GABA agonist), orphenadrine (diphenhydramine/antihistamine)
- Common adverse effects

 sedation, lethargy & confusion (cyclobenzaprine), dependence (carisoprodol)

Painweek.

61

Case Study

- 54 year-old with three year history of neck, shoulder and upper extremity pain following a lifting injury
 Current Medications
 Fluoxetine

 - Milnacipran
 Gabapentin

 - Gabapentin
 Clonazepam
 Alprazolam
 Methocarbamol
 Tapentadol
 Acataminophen and propoxyphene
 Zolpidem
 Diclofenac topical
 Acataminophen

 - Acetaminophen

Painweek.

62

Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain

- Allow for rational rather than empirical approach to pain control
 Foster the development of diagnostic tools to identify specific pain mechanisms
 Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
 Reduce the number of pharmacotherapies and incidence of drug-related adverse events (rationale polypharmacy)
 Fabance use of non-pharmacologic treatments
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome
 Tailoring treatment based on the individual patient and pain type
 Do not forget to look for the spear

Painweek.