Opioid Induced Hyperalgesia

Steve Prakken MD
Chief of Medical Pain Service
Duke Pain Medicine
Disclosures

- Steve Prakken MD
 - Pfizer: Advisor
 - Radeas: Consultant
Learning Objectives

- Define and demonstrate evidence for the presence of OIH
- Define 2 likely mechanisms for OIH
- Recognize clinical clues for OIH in patients
- Formulate treatment options for patients with OIH
Outline

- DEFINITION
- DOES ITEXIST?
- WHAT IS IT?
 - Anatomical possibilities
 - Neurochemical possibilities
- CLINICAL PRESENTATION
- TREATMENT
Definition

- Opiate induced hyperalgesia (OIH) is best considered a state of nociceptive sensitization caused by exposure to opioids.

Chu 2008
Does OIH Exist

- Over 1500 articles related to OIH in humans and animals
- Animal studies, generally support the presence of OIH
- Human studies, some controversy, clinically relevant

Angst 2006, Fishbain 2009, Yi 2015
Does OIH Exist

HUMAN STUDIES

- Opiate addicts
 - Tends to support OIH
- Perioperative opiates
 - Mixed results
- Experimental exposure
 - Best evidence
- Controlled studies
 - Few
Opioid Addicts

- Former opiate addicts on methadone
- Found to have an increased sensitivity to cold pressor, though hyperalgesia to electrical or mechanical pain was weak or absent
- Confounded by
 - Effect of length of exposure
 - Pre-addiction quality of pain tolerance
 - Genetic predisposition

Perioperative Opioid Exposure

- Fentanyl and remifentanil exposure primarily, with mixed outcome
 - Preop exposure leads to increased postoperative opioid consumption, or peri-incisional wound allodynia and hyperalgesia (Joly 2005 Chia 1999)
 - Preop exposure vs naïve, undergoing GYN or GI surgery with no difference in postoperative consumption of opioids (Lee 2005 Hansen 2005 Cortinez 2001)
Acute Opioids Exposure in Healthy Volunteers

- Opiate exposure in volunteers that are opiate naïve
 - Brief hyperalgesia to mechanical, cold pressor, and electrical stimuli
 - Usually lasting 30-90 minutes and resolve by the next day

- Fishbain literature review (2009)
 - This is primary model showing any significant evidence for OIH in the human literature

Prospective Observational Studies in Chronic Pain Patients

- Chu (2006), with a small N and using MS at 75 mg per day max for 1 month, found significant hyperalgesia and analgesic tolerance in cold pressor model but not in heat model
Prospective Observational Studies in Chronic Pain Patients (cont’d)

- OIH with hydromorphone
 - 30 patients over 4 weeks
 - Hydromorphone to 24 mg per day max
 - Washout from other opiates
 - ER hydromorphone
 - Clinical and experimental pain response
 - OIH measured by CP and heat
- OUTCOMES
 - Analgesia and OIH concurrently
 - Dose dependent

Suzan et al 2013
What is MOA

- **Peripheral**
 - TRP-V1, cytokines, beta-2 adrenergic receptors

- **Spinal**
 - NMDA, dynorphin, cytokines, substance P, 5HT3
 - Dorsal horn is primary site of action

- **Supraspinal**
 - PAG with 5HT, NE, opioid
 - RVM with opioid “on” cells, 5HT
 - Anterior cingulate

- **Glial cell activation**

Glial Cell Activation
Glial Cell Activation (cont’d)

- Microglia > astrocytes
 - Activation causing cascade of events in both the brain and spinal cord

- Triggers
 - Nerve damage byproducts
 - Intracellular debris
 - Heat shock proteins
 - Inflammatory stressors
 - Opioids
 - ETOH

DeLeo 2004, Bianchi 2007)
Glial Cell Activation (cont’d)

- Activation releases
 - Proinflammatory cytokines (interleukin 1&6, TNF, ATP, NO, prostaglandins, substance P, etc)

- Increase neural activity due to
 - Upregulate AMPA, NMDA
 - Downregulate GABA and other modulating CNS activities

- Feedback loop
 - Ongoing activation of the CNS, including the “illness response”

Glial Cell Activation (cont’d)

- Appears to be independent of classic opiate receptors
 - Toll like receptor 4 (TLR4)
 - Nonstereoselective, unlike opioid receptors
 - Unique treatment options
- Mu receptor may not be involved in OIH

Alternative Mu Opioid Receptor

- **Mu opiate receptor 1 (MOR1), G-protein receptor with 7 domains**
 - Has standard inhibitory response, through decrease in Ca++, NO, and cAMP

- **MOR1K is G-protein receptor with only 6 domains**
 - Has atypical excitatory response, showing increase in Ca++, NO, and cAMP
 - Shown to cause OIH in mouse model

Diatchenko 2010, Folabomi 2015
Diffuse Noxious Inhibitory Control (DNIC)

- Endogenous pain inhibition
 - Pain inhibits pain

- Nociceptive input form C and A delta
 - Wide dynamic range neurons at DH inhibited
 - Inhibition originates from upper CNS centers
DNIC Measurement

- Pressure pain threshold (PPT)
 - First pressure noted

- Pain tolerance (Ptol)
 - Intolerable

- Second painful stimuli applied to distant location and PPT measured again
 - Delta of PPT under both conditions is DNIC
Clinical Presentation

- OIH IS NOT
 - Tolerance
 - Progression of lesion
 - Withdrawal pain
 - Medication effects
 - Generic
 - Formulation changes (oxycodone ER)
Clinical Presentation

- OIH (for hours to days) with either acute or chronic opioid dosing
- OIH may be more prone in mechanical pain rather than electrical or thermal (though methadone addicts don’t show this)
- OIH with high or low dose opioids (though larger doses were faster and longer)
- Route of administration not important
- Shorter half life tended to give more rapid tolerance and OIH
- Relative potency was not a factor
- Sensitization lasted long after direct OIH effects were resolved
- Pain at a site different than the original pain may be a marker for OIH. Generalized pain or flare of previously resolved pain

Angst and Clark 2006, Bekhit 2010
Clinical Presentation

- Rossback 1880

“When dependence on opioids finally becomes an illness of itself, opposite effects like restlessness, sleep disturbance, hyperesthesia, neuralgia, and irritability become manifest.”
Clinical Presentation

- Sleep reduced consistently
- Irritability
- Thoughts racing
- Physical agitation
 - Myoclonic jerking
 - Night time movements
- Distractible
- Impulsivity
Irritable Mania, DSM V Criteria

- Distinct period of abnormally and persistently elevated, expansive or irritable mood, lasting at least 1 week

- With 3 (or more) of the following symptoms have persisted (4 if the mood is only irritable) and have been present to a significant degree:
 - Inflated self-esteem or grandiosity
 - Decreased need for sleep (eg, feels rested after only 3 hours of sleep)
 - More talkative than usual or pressure to keep talking
 - Flight of ideas or subjective experience that thoughts are racing
 - Distractibility
 - Increase in goal-directed activity or psychomotor agitation
 - Excessive involvement in pleasurable activities that have a high potential for painful consequences

- Sufficiently severe to cause marked impairment in occupational or usual social activities or relationships
- The symptoms are not due to the direct physiological effects of a substance (eg, a drug of abuse, a medication, or other treatment)
Clinical Presentation

- Not to be given the dx of bipolar disease
 - Type I, II, III
- Looks like Cluster B, some obsessive or mixed mood
- Clinically associated with:
 - Family history of mood instability consistent with BAD
 - Personal mood instability
 - Personality d/o
 - Severe mood variability
 - Bipolar dx
Adjunctive Treatment

- NMDA receptor antagonists (NMDARAs)
 - Ketamine
 - Dextromethorphan
 - 3 RCTs with 1:1 MS and dextro, no different than MS alone
 - Nuedexa
 - Memantine
 - Open channel NMDARA

- GABA-A antagonist
 - Propofol

- Alpha-2 agonist
 - Clonidine
 - Dexmedetomidine

Opioid Treatment

- Opioid rotation
- Opioid reduction
- Methadone (levorphanol)
 - NMDA receptor antagonist
- Buprenorphine

TLR-4 Treatment

ANTAGONIST

- Ibudilast
 - Asthma and stroke tx, now AV411
- Amitriptyline
- Imipramine
- Cyclobenzaprine
- Naloxone/naltrexone
Glial Cell Inhibitors

REDUCE MIGRATION

- Minocycline (TCN derivative)
- Cannabinoids (CBR2 in particular)
Clinical Approach

- OIH as unintended clinical outcome
- OIH as tool
- OIH as club
Clinical Approach (cont’d)

- Identify
 - Sleep disturbance primary
 - Medicated?
 - Reported stimulation from the opiate
 - Irritability
 - Collateral, inconsistent history, staff reactions
 - Impulsivity
 - Medication, behavioral dysregulation
Clinical Approach (cont’d)

- Educate, enlist cooperation
 - Predict outcome
 - Curious about change in behavior with opiates
 - Collateral information supporting change in behavior
 - Not about opiate use per se
Clinical Approach (cont’d)

- **Rotate**
 - Oxycodone, fentanyl, hydrocodone
 - Oxymorphone
 - MS, hydromorphone, methadone, levorphanol
 - Buprenorphine
 - Tapentadol

- **Mood stabilize**
 - Lamotrigine, aripiprazole
 - Duloxetine

- **Stimulating agents to help DC of opioids**
 - Replacement
 - Bupropion, modafinil, atomoxetine
 - Dextroamphetamine, methylphenidate
Clinical Approach (cont’d)

- Opioid holiday
 - Tapering schedules
 - Effective “holiday” time unknown
 - Is OIH reversible
 - Pain management in the interim
 - PRN opiates
Summary

- OIH exists
- Varied mechanisms
 - Multiple mechanisms
 - Glial cell activation as common denominator?
- CNS is primary
 - Cord and brain
- Clinical appearance
 - Increasing pain with increasing opioid activation
- Treatment options
 - Rotation, education, replacement, holiday trial
THANK YOU