Pain Pathophysiology Unraveled

David M Glick, DC, DAAPM, CPE

Disclosures

- Nothing to Disclose
Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes

Classification of Pain

- Good pain vs Bad Pain

Clinical Pearl
Good Pain

- **Nociceptive pain:** purposeful pain
 - **Eudynia**—pain linked to normal tissue function or damage
 - Nonmaldynic pain
 - Adaptive

Bad Pain

- **Neuropathic Pain:** Nonpurposeful Pain
 - **Maldynia**—pain linked to disorder, illness or damage
 - i.e., may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS
Pain Mechanisms

General Anatomy of Pain

Cortex and subcortical regions:
Perception, sensory, & affective pain components

Brainstem:
Descending modulation

Spinal cord:
Synaptic transmission, modulation & central sensitization

Periphery:
Transmission & peripheral sensitization

Pain Roadmap:
Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (ie, occurring in real time)
- Adapts or changes in response to function—“Neuroplasticity”

Common Types of Pain

<table>
<thead>
<tr>
<th>Nociceptive pain</th>
<th>Noxious stimuli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat, Cold, Mechanical force, Chemical irritants</td>
</tr>
</tbody>
</table>

- Adaptive, high-threshold pain: Early warning system (protective)

<table>
<thead>
<tr>
<th>Inflammatory pain</th>
<th>Macrophage, Mast cell, Neutrophil, Granulocyte, Tissue Damage</th>
</tr>
</thead>
</table>

- Adaptive, low-threshold pain: Promotes repair (protective)

<table>
<thead>
<tr>
<th>Neuropathic pain</th>
<th>Neural lesion, Positive and negative symptoms</th>
</tr>
</thead>
</table>

- Maladaptive, low-threshold pain: Disease state of nervous system

<table>
<thead>
<tr>
<th>Functional pain</th>
<th>Dysfunctional pain</th>
</tr>
</thead>
</table>

- Normal peripheral tissue and nerves

Nociceptive vs Neuropathic Pain

Pain Pathway Steps

Molecular Elements: Peripheral - Central

<table>
<thead>
<tr>
<th>Transduction</th>
<th>Peripheral sensitization</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPV1, TRPV2, TRPV3, TRPM8</td>
<td>NGF, TrkA</td>
</tr>
<tr>
<td>ASIC, DRASIC</td>
<td>TRPV1</td>
</tr>
<tr>
<td>MDEG, TREK-1</td>
<td>Na+, 1.8, Na+, 1.3</td>
</tr>
<tr>
<td>BKp, BKs</td>
<td>PKA, PKC isoforms, CaMK IV</td>
</tr>
<tr>
<td>P2X3</td>
<td>IL-1β, cPLA2, COX2, EP1, EP3, EP4</td>
</tr>
<tr>
<td></td>
<td>TNFα</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Membrane excitability of peripheral afferents</th>
<th>Synaptic Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+, 1.8, Na+, 1.3</td>
<td>Presynaptic</td>
</tr>
<tr>
<td></td>
<td>VGCC</td>
</tr>
<tr>
<td></td>
<td>Adenosine-R</td>
</tr>
<tr>
<td></td>
<td>(mGlu-R)</td>
</tr>
</tbody>
</table>

	Postsynaptic
	AMPA/kainite-R, NMDA-R, mGlu-R
	NK1
	Na+, 1.3
	K+ channel

	Central Inhibition
	GABA, GABA_A-R, GABA_B-R
	Glycine-R
	NE, 5-HT
	Opioid receptors
	CB1

	Signal transduction
	PKA, PKC isoforms
	ERK, p38, JNK

| | Gene expression |
| | c-fos, c-jun, CREB, DREAM |

Adapted from Scholz J, Woolf CJ. Nature Neuroscience supplement Vol 5, 2002

Transduction: Processing at Peripheral Nerve Endings

- Conversion of mechanical or chemical stimuli into an electric charge
- Involves
 - receptors activated directly by stimuli
 - injury/inflammatory response

How is Pain Transduced?

- Nociception
 - Mechanical
 - Thermal
 - Chemical

- Mediators
 - Prostaglandins
 - Leukotrienes
 - Substance P
 - Histamine
 - Bradykinin
 - Serotonin
 - Hydroxyacids
 - Reactive oxygen species
 - Inflammatory cytokines and chemokines

Conduction

- Conduction impulses from primary nociceptors to the spinal cord (dorsal horn) along the peripheral nerve.
Primary Nociception

- **A-delta fibers**
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- **C-fibers**
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

Peripheral Pain Nociceptors

- **Aβ** - muscle spindle secondary endings, touch, and kinesthesia.
- **Aδ** - pain, temperature, crude touch, and pressure.

How is Pain Conducted and Transmitted?

- **Excitatory Transmitters**
 - Substance P
 - Calcitonin gene related peptide
 - Aspartate, Glutamate

- **Inhibitory Transmitters (Descending Inhibitory Pathways)**
 - GABA
 - Glycine
 - Somatostatin
 - α_2 agonists

Transmission & Modulation

Ascending nociceptive pathways
Transmitting nociceptive impulses from the dorsal horn to supraspinal targets
- **Fast (green)** Neospinalthalamic
- **Slow (yellow)** Paleospinalthalamic

Descending inhibitory tracts
- **(blue)**
 - Increase or decrease volume control of incoming nociceptive signals reaching the brain
 - 5-HT - Serotonin
 - NE - Norepinephrine

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
- Decreases body’s pain inhibitory systems
 - Increased Pain
- Injury, inflammation, and disease are culprits
- Produces short-term and permanent changes
- Pivotal to the development of hypersensitivity of inflammatory pain
 - Enables NS to modify its function according to different conditions

How Acute Pain Becomes Chronic

- Peripheral Sensitization
 - Tissue damage releases sensitizing “soup” of cytokines & neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized nociceptors exhibiting a decreased threshold for activation & increased rate of firing
- Central Sensitization – Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia
Definitions

- **Hyperalgesia**
 - Lowered threshold to different types of noxious stimuli

- **Allodynia**
 - Painful response to what should normally be non-painful stimuli

Neuroplasticity in Pain Processing

![Neuroplasticity Diagram](image)

Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization
How Acute Pain Becomes Chronic

- Central Sensitization
 - Activation
 • “Wind up” of dorsal horn nociceptors
 - Modulation
 • Excitatory/Inhibitory neurotransmitters
 - Decreased central inhibition of pain transmission
 - Prime role in chronic pain, particularly neuropathic pain

Definitions

- Wind Up
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 • NMDA-type glutamate receptors play an important role in this process
 1, 2, 3, 4
 • Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons 2, 3

Central Sensitization

Key Influences upon signal propagation

- **Excitatory Neurotransmitters**
 - Substance P, CGRP, Glutamate
- **NMDA Channel Activity**
 - Glutamate binding
 - Altering channel activity
- **Descending inhibitory tracts**
 - NE/Serotonin (5HT)
- **Mu opioid receptor**

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropanoic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P; CRGP = Calcitonin gene related peptide
Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing 1,2

Spinal cord glial cell

Aδ

C Fiber

Descending inhibitory axon

Second-order projection neuron (to brain)

GABA-ergic inhibitory interneuron

Neuroplasticity: Neural Reorganization

CTB = cholera toxin B

CTB = cholera toxin B
Neuroplasticity: Cross Talk

Central Sensitization:
Neuroplasticity in Spinal Cord Processing

• Definition: Altered function of neurons or synaptic activity
• Mechanisms of central sensitization may include:
 – Changes effecting glutamate / NMDA receptors activity
 • Reduced threshold for activation
 • Increased availability of Glutamate
 • Increased influx of Na⁺/Ca⁺ (receptor open longer)
 – Modulation – Excitatory/Inhibitory neurotransmitters
 – Decreased tone - descending inhibitory pathways²
 – Activation/migration of glial cells into the spinal cord³
 – Changes in the thalamus and primary somatosensory cortex⁴

Brain Regions Involved in Pain Processing

- Somatosensory cortex
 - Localization
- Thalamus
 - Routing
- Hippocampus
 - Pain memory/Learning
- Amygdala
 - Emotional Aspect
- Prefrontal cortex
 - Motor planning
- Anterior cingulate cortex
 - Context/Situation of pain
- Insular cortex
 - Pain judged to the degree and where pain is imagined

Analgesics That Modify Pain Processes

- **Transduction**
 - NSAIDs
 - Antihistamines
 - Membrane stabilizing agents
 - Local anesthetic cream
 - Opioids
 - Bradykinin & Serotonin antagonists
- **Transmission/Modulation**
 - Spinal opioids
 - α_2 agonists
 - NMDA receptor antagonists
 - NSAIDs
 - NO inhibitors
 - K^+ channel openers
- **Perception**
 - Parenteral opioids
 - α_2 agonists
 - General anesthetics
- **Conduction**
 - Local anesthetics
 - Peripheral nerve, plexus, epidural block
Pharmacological Targets in Pain

Peripheral Sensitization
- NSAIDs
- Venoms
- Ectopic Activity
- Non-channels Models
- Fast Channel Blockers
- M2/M3 receptor antagonists
- Eledenizine inhibition

Descending Modulation
- Central sensitization
- CNS
- Pain Amplification
- PNS
- Pain Transmission
- Local Anesthetics
- Opioids

Central Sensitization
- Peripheral sensitization
- CNS
- Pain Amplification
- Pain Transmission
- Local Anesthetics
- Antidepressants

The Chronic Pain Armamentarium

Nonopioids
- Acetaminophen
- NSAIDs
- COX-2 inhibitors

Opioids
- Mu-opioid agonists
- Mixed Agonist-antagonists

Adjuvant analgesics
- Antidepressants
- Anticonvulsants
- Topical agents/local anesthetics

WHO
- Pain
- Non-opioid analgesics
- Opioid or non-opioid plus a second analgesic
- Opioid, if not contraindicated
Common Pharmacologic Therapies

- Acetaminophen
- NSAIDS
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle Relaxants
- Opioids

Nonopioids: Acetaminophen

Example
- Acetaminophen

Mechanism of Action
- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

FDA Warning
- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome & toxic epidermal necrolysis
Nonopioids: NSAIDs

Examples
- Acetylated (aspirin); nonacetylated (diflunisal); acetic acid (diclofenac); propionic acid (naproxen);
- fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (nabumetone); ibuprofen,
 selective COX-2s (celecoxib)

Mechanism of Action
- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- Inhibition of leukotriene B4 production

Opioids

Examples
- Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramadol

Mechanism of Action
- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive
 input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects
Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response

Modulation of Central Sensitization by 5-HT & NE Descending Pathways
Mechanism of Action - Opioids

Cortex and subcortical regions: Perception, sensory, and affective pain components

Brainstem: Descending modulation

Spinal cord: Synaptic transmission, modulation and central sensitization

Periphery: Transmission and peripheral sensitization

Adapted from Woolf C, Max M Anesthesiology 2001

Adjuvant Analgesics: Tricyclic Antidepressants

Examples
- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action
- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability),
 - cardiotoxic (overdose)
TCAs and SNRIs Pharmacological Properties

Adjuvant Analgesics: SSRIs
(Selective Serotonin Reuptake Inhibitors)

Examples
— Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline

Mechanism of action
— Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!
Serotonin

- **International Union of Pure and Applied Chemistry nomenclature**
 - 5-Hydroxytryptamine (5-HT)
 - monoamine neurotransmitter, biochemically derived from tryptophan
 - receptors are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) found in the central and peripheral nervous systems

Serotonin/5-HT Receptors

<table>
<thead>
<tr>
<th>Family</th>
<th>Type</th>
<th>Mechanism</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT1</td>
<td>Gq/Gi protein coupled.</td>
<td>Decreasing cellular levels of cAMP.</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT2</td>
<td>Gq/Gi protein coupled.</td>
<td>Increasing cellular levels of IPs and DAG.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT3</td>
<td>Ligand-gated Na⁺ and K⁺ cation channel</td>
<td>Depolarizing plasma membrane.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT4</td>
<td>Gq protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT6</td>
<td>Gi/Gq protein coupled.</td>
<td>Decreasing cellular levels of cAMP.</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>5-HT7</td>
<td>Gq protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
<tr>
<td>5-HT7+</td>
<td>Gq protein coupled.</td>
<td>Increasing cellular levels of cAMP.</td>
<td>Excitatory</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/5-HT_receptor
Serotonin/5-HT Receptors

- 5-HT1a (Blood Ves/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart Rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile Erection
 - Pupil Dilatation
- 5-HT1a (cont)
 - Respiration
 - Sexual Behavior
 - Sleep
 - Sociability
 - Thermoregulation
- 5-HT5a & 5-HT6 (CNS)
 - Locomotion
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood

http://en.wikipedia.org/wiki/5-HT_receptor

Adjuvant Analgesics: SNRIs
(Serotonin/Noradrenaline Reuptake Inhibitors)

Examples
- duloxetine, milnacipran, and venlafaxine

Mechanism of action
- Block reuptake of 5-HT and NA
 - (better tolerated, lower tendency for drug-drug interactions, better overdose safety)
Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Site of Action - SNRIs

Adapted from Woolf C. Max M Anesthesiology 2001
Adjuvant Analgesics: Antiepileptics

Examples
- Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, clonazepam, levetiracetam, topiramate, lamotrigine

Mechanism of action
- Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca++)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Binds the α2δ subunit of voltage-gated Ca+ channels, inhibit NT release

Site of Action - Antiepileptics
Adjuvant Analgesics: Topicals

Examples
- Lidocaine Patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Dicofenac (cream/liquid/patch)

Mechanism of action
- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response

Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting
Muscle Relaxants - Spasmolytics

- Enhancing the level of inhibition
 - mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation.
- Common examples
 - cyclobenzaprine (TCA) methocarbamol, carisopradol, tizanadine (α-2 agonist), baclofen (GABA agonist), orphenadrine (benzodiazepine)
- Common adverse effects
 - sedation, lethargy & confusion (cyclobenzaprine), dependence (carisopradol)

Case Study

- 54 year-old with three year history of neck, shoulder and upper extremity pain following a lifting injury
 - Current Medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clonazepam
 - Alprazolam
 - Robaxin
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen
Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome

Summary

- Today's clinicians must possess a working knowledge of the etiology and mechanisms of pain syndromes
 - Understanding pain mechanisms/pathophysiology is key to successful pain control
 - Reduce the number of medications and incidence of drug-related adverse events
 - (rationale polypharmacy)
 - Many therapeutic options are available
 - (non-pharmacological)
 - Tailoring treatment based on the individual patient and pain type can improve outcomes
 - Understanding how treatments effect function clinical presentation and function
 - Do not forget to look for the spear