Pain Pathophysiology Unraveled

David M Glick, DC, DAAPM, CPE

Disclosures

- Nothing to Disclose

Learning Objectives

- Differentiate between nociceptive and neuropathic pain
- Describe the process of pain transmission
- Identify the specific pain pathways that can be acted upon by common pharmacotherapy classes
Classification of Pain

- Good pain vs. Bad Pain

Clinical Pearl

Good Pain

- Nociceptive Pain: Purposeful Pain
 - Eudynia - being pain linked to normal tissue function or damage
 - Non-maladaptive Pain
 - Adaptive

Bad Pain

- Neuropathic Pain: Non-purposeful Pain
 - Maldynia - pain linked to disorder, illness or damage
 - Le may be abnormal, unfamiliar pain, assumed to be caused by dysfunction in PNS or CNS
Pain Mechanisms

General Anatomy of Pain

- Cortex and subcortical regions: Perception, sensory, & affective pain components
- Brainstem: Descending modulation
- Spinal cord: Synaptic transmission, modulation & central sensitization
- Periphery: Transmission & peripheral sensitization

Pain Roadmap:
Peripheral and Central Nervous System Landmarks

- Physiologic process involving multiple areas of the nervous system
- Bidirectional
- Involves normal as well as pathological processes
- A sensory experience associated with affective and cognitive responses
- Dynamic (i.e. occurring in real time)
- Adapts or changes in response to function – “Neuroplasticity”
Common Types of Pain

Nociceptive pain
Inflammatory pain
Neuropathic pain
Functional pain

Nociceptive vs Neuropathic Pain

Pain Pathway Steps
Molecular Elements: Peripheral - Central

<table>
<thead>
<tr>
<th>Transduction</th>
<th>Synaptic Transmission</th>
<th>Peripheral sensitization</th>
<th>Central Inhibition</th>
<th>Signal transduction</th>
<th>Gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPV1, TRPV2, TRPV3, TRPM8, ASIC, TREK-1, BK, SK, PKA, PKC isoforms, CaMK IV, Erk ½, p38, JNK</td>
<td>Adenosine-R, mGlu-R</td>
<td>NGF, TrkA, TRPV1, Nav 1.8, Nav 1.9, K⁺ channel</td>
<td>GABA, GABA-A-R, GABA-B-R, Glycine-R, NE, 5-HT, Opioid receptors</td>
<td>PAM, P2X receptors</td>
<td>c-fos, c-jun, CREB, DREAM</td>
</tr>
</tbody>
</table>

How is Pain Transduced?

- **Nociception**
 - Mechanical
 - Thermal
 - Chemical

- **Mediators**
 - Prostaglandins
 - Substance P
 - Histamine
 - Bradykinin
 - Serotonin
 - Hydroxyacids
 - Reactive oxygen species
 - Inflammatory cytokines and chemokines

Adapted from Scholz J, Woolf CJ, Nature Neuroscience supplement Vol 5, 2002

Transduction:

Processing at Peripheral Nerve Endings

- Conversion of mechanical or chemical stimuli into an electric charge
- Triggers
 - receptors activated directly by stimuli
 - injury/inflammatory response
Conduction

- Conduction impulses from primary nociceptors to the spinal cord (dorsal horn) along the peripheral nerve.

Primary Nociception

- A-delta fibers
 - Small receptive fields
 - Thermal & mechanical
 - Myelinated
 - Rapidly conducting
 - 10-30 m/sec
 - Large diameter

- C-fibers
 - Broad receptive fields
 - Polymodal
 - Unmyelinated
 - Slower conducting
 - .5-2.0 m/sec
 - Cross sensitized
 - Small diameter

Peripheral Pain Nociceptors

- Aβ - muscle spindle secondary endings, touch, and kinesthesia.
- Aδ - pain, temperature, crude touch, and pressure.

References:
How is Pain Conducted and Transmitted?

- Excitatory Transmitters
 - Substance P
 - Calcitonin gene-related peptide
 - Aspartate, Glutamate

- Inhibitory Transmitters (Descending inhibitory pathways)
 - GABA
 - Glycine
 - Somatostatin
 - α2 agonists

Transmission & Modulation

Ascending nociceptive pathways
- Transmitting nociceptive impulses from the dorsal horn to supraspinal targets
 - Fast (green): Neospinalthalamic
 - Slow (yellow): Paleospinalthalamic

Descending inhibitory tracts (Blue)
- Increase or decrease volume control of incoming nociceptive signals reaching the brain
 - 5-HT - Serotonin
 - NE - Norepinephrine

Role of Neuronal Plasticity in Pain

- Nervous system changes in
 - Neuronal structure
 - Connections between neurons
 - Quantity/properties of neurotransmitters, receptors, ion channels
 - Decreases body's pain inhibitory systems
 - Increased Pain
 - Injury, inflammation, and disease are culprits
 - Prolongs short-term and permanent changes
 - Pivotal to the development of hyperalgesia of inflammatory pain
 - Enables NS to modify its function according to different conditions
How Acute Pain Becomes Chronic

- Peripheral Sensitization
 - Tissue damage releases sensitizing "soup" of cytokines & neurotransmitters
 - COX-mediated PGE2 release
 - Sensitized receptors exhibiting a decreased threshold for activation & increased rate of firing

- Central Sensitization - Resulting from noxious input to the spinal cord
 - Resulting in hyperalgesia, & allodynia

Definitions

- **Hyperalgesia**
 - Lowered threshold to different types of noxious stimuli

- **Allodynia**
 - Painful response to what should normally be non-painful stimuli

Neuroplasticity in Pain Processing
Neuroplasticity in Peripheral Pain Transmission

Peripheral Sensitization

How Acute Pain Becomes Chronic

- Central Sensitization
 - Activation
 - "Wind-up" of dorsal horn nociceptors
 - Modulation
 - Excitatory/inhibitory neurotransmitters
 - Decreased central inhibition of pain transmission
 - Prime role in chronic pain, particularly neuropathic pain
Definitions

- **Wind Up**
 - Causes long-term changes in nociceptive neurons, which become hyperexcitable such that they respond to lower stimuli
 - NMDA-type glutamate receptors play an important role in this process
 1,2,3,4
 - Prolonged opening of the ion channels enables greater influx of calcium and sodium across the post-synaptic membrane and greater excitation of nociceptive neurons 2,3

Central Sensitization

- Excitatory Neurotransmitters
 - Substance P, CGRP, Glutamate
- NMDA Channel Activity
 - Glutamate binding
 - Altering channel activity
- Descending inhibitory tracts
 - NE/Serotonin (5HT)
 - Mu opioid receptor

Adapted from Schlotz J, Woolf CJ. Nat Neuroscience. 2002;5:1062-1067

NK-1 = Neurokinin 1 receptor; AMPA = alpha-amino-3-hydroxy-5-methyle 4-isoxazolepropionic acid; NMDA = N-methyl-D-aspartic acid; VGCC = voltage gated sodium channel; TrkB = tropomyosin receptor kinase B; BDNF = Brain derived neurotrophic factor; SP = substance P; CGRP = Calcitonin gene related peptide
Dorsal Horn of the Spinal Cord Serves as a Relay Station in Pain Processing

- Spinal cord glial cell
- Second-order projection neuron (to brain)
- GABA-ergic inhibitory interneuron
- C Fiber
- Descending inhibitory axon

Adapted from:

Neuroplasticity: Neural Reorganization

Neuroplasticity: Cross Talk
Central Sensitization: Neuroplasticity in Spinal Cord Processing

- Definition: Altered function of neurons or synaptic activity
- Mechanisms of central sensitization may include:
 - Changes affecting glutamate/NMDA receptors activity
 - Reduced threshold for activation
 - Increased availability of glutamate
 - Increased influx of Na+/Ca2+ (receptor open longer)
 - Modulation – Excitatory/Inhibitory neurotransmitters
 - Decreased tone - descending inhibitory pathways
 - Activation/migration of glial cells into the spinal cord
 - Changes in the thalamus and primary somatosensory cortex

Brain Regions Involved in Pain Processing

- Prefrontal cortex: Motor planning, context/situation of pain
- Anterior cingulate cortex: Pain judged to the degree and where pain is imagined
- Insular cortex: Pain
- Amygdala: Emotional aspect
- Thalamus: Localization
- Somatosensory cortex: Localization

Analgesics That Modify Pain Processes

- Transduction:
 - NSAIDs
 - Antihistamines
 - Membrane-stabilizing agents
 - Local anesthetics
 - Opioids
- Transmission/Modulation:
 - Spinal opioids
 - NMDA receptor antagonists
 - NK-1 antagonists
 - K+ channel openers
- Conduction:
 - Local anesthetics
 - Preparations such as regional block

- Pain and emotion
- Pain only
- Prefrontal cortex: Motor planning
- Anterior cingulate cortex: Context/situation of pain
- Insular cortex: Pain judged to the degree and where pain is imagined
- Amygdala: Emotional aspect
- Thalamus: Localization
- Somatosensory cortex: Localization
Pharmacological Targets in Pain

The Chronic Pain Armamentarium

Common Pharmacologic Therapies

- Acetaminophen
- NSAIDs
- Antiepileptics
- TCAs
- SNRIs
- Topicals
- Muscle Relaxants
- Opioids
Nonopioids: Acetaminophen

Example
- Acetaminophen

Mechanism of Action
- Inhibits prostaglandin production in CNS; antipyretic activity
- No effect on blocking peripheral prostaglandin production; no anti-inflammatory or antirheumatic activity

FDA Warning
- Potential severe liver damage if over-used
- Stevens-Johnson Syndrome & toxic epidermal necrolysis

Nonopioids: NSAIDs

Examples
- Acetylated (aspirin); nonacetylated (dilugen); acetic acid (diclofenac); propionic acid (naproxen); fenamic acid (mefenamic acid); enolic acids (piroxicam); nonacidic (naproxen); ibuprofen, selective COX-2s (celecoxib)

Mechanism of Action
- Exhibit both peripheral and central effects; antiinflammatory and analgesic effects
- Inhibition of cyclooxygenase and prostaglandin production
- Inhibition of leukotriene B4 production

Opioids

Examples
- Morphine, hydromorphone, fentanyl, oxycodone, oxymorphone, meperidine, codeine, methadone, tramide

Mechanism of Action
- Bind to opioid receptors in the central nervous system (CNS) to inhibit transmission of nociceptive input from periphery to spinal cord
- Activate descending pathways that modulate transmission in spinal cord
- Alter limbic system activity; modify sensory and affective pain aspects
Overview of Descending Pain Inhibitory Pathways and Modulation of Pain Response

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Mechanism of Action - Opioids
Adjuvant Analgesics: Tricyclic Antidepressants

Examples
- Amitriptyline, desipramine, doxepin, imipramine, nortriptyline

Mechanism of action
- Reduction in action potential firing of sodium channel activity
- Inhibition of reuptake of NE and 5-HT
- Analgesia is independent of antidepressant function
- High side effect profile (tolerability),
 - Cardiotoxic (overdose)

Adjuvant Analgesics: SSRIs (Selective Serotonin Reuptake Inhibitors)

Examples
- Citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline

Mechanism of action
- Selectively inhibit 5-HT reuptake without affecting NE

Therefore, no pain relief expected!
Serotonin

- International Union of Pure and Applied Chemistry nomenclature
 - 5-hydroxytryptamine (5-HT)
 - Monoamine neurotransmitter, biochemically derived from tryptophan
 - Receptors are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) found in the central and peripheral nervous systems

- Serotonin/5-HT Receptors
 - 5-HT1a (Blood Vessels/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart Rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile Erection
 - Pupil Dilatation
 - Respiration
 - Sexual Behavior
 - Sleep
 - Sociality
 - Thermoregulation
 - Sexual Function
 - Sleep
 - Anxiety
 - Cognition
 - Learning
 - Memory
 - Mood
 - Nociception

- Serotonin/5-HT Receptors
 - 5-HT6 (Blood Vessels/CNS)
 - Addiction
 - Aggression
 - Anxiety
 - Appetite
 - BP
 - Cardiovascular function
 - Emesis
 - Heart Rate
 - Impulsivity
 - Memory
 - Mood
 - Nausea
 - Nociception
 - Penile Erection
 - Pupil Dilatation
 - Respiration
 - Sexual Behavior
 - Sleep
 - Sociality
 - Thermoregulation

http://en.wikipedia.org/wiki/5-HT_receptor
Adjuvant Analgesics: SNRIs
(Serotonin/Noradrenaline Reuptake Inhibitors)

Examples
— duloxetine, milnacipran, and venlafaxine

Mechanism of action
— Block reuptake of 5-HT and NA
 • (better tolerated, lower tendency for drug-drug interactions, better overdose safety)

Modulation of Central Sensitization by 5-HT & NE Descending Pathways

Site of Action - SNRIs
Adjuvant Analgesics: Antiepileptics

Examples
- Gabapentin, pregabalin*, carbamazepine, phenytoin, divalproex sodium, levetiracetam, topiramate, lamotrigine

Mechanism of action
- Suppress neuronal hyperexcitability via
 - Reducing neuronal influx of sodium (Na+) and calcium (Ca++)
 - Direct/indirect enhancement of GABA inhibitory effects
 - Reduce activity of glutamate and/or blocking NMDA receptors
 - Blocks the α2δ subunit of voltage gated Ca+ channels, inhibits NT release

Adjuvant Analgesics: Topicals

Examples
- Lidocaine Patch 5%, eutectic, mixture of lidocaine and prilocaine
- Capsaicin cream/patch
- Diclofenac (cream/liquid/patch)

Mechanism of action
- Block sodium channels and inhibit generation of abnormal impulses by damaged nerves
- Depletion of peripheral small fibers and therefore Substance P release from sensory nerve endings
- Target local inflammatory response
Muscle Relaxants

- Decrease tone of skeletal muscles
- Subclasses
 - Neuromuscular blockers
 - Act at the neuromuscular junction
 - Often used in surgery to cause temporary paralysis
 - Spasmolytics
 - Centrally acting

Muscle Relaxants – Spasmolytics

- Enhancing the level of inhibition
 - Mimicking or enhancing the actions of endogenous inhibitory substances, such as GABA
- Reducing the level of excitation.
- Common examples
 - cyclobenzaprine (TCA) methocarbamol, carisoprodol, tizanidine (α-2 agonist), tizanidine (GABA agonist), oxybutynin (benzodiazepine)
- Common adverse effects
 - sedation, lethargy, or confusional (cyclobenzaprine), dependence (carisoprodol)

Case Study

54 year-old with three year history of neck, shoulder and upper extremity pain following a lifting injury
- Current Medications
 - Fluoxetine
 - Milnacipran
 - Gabapentin
 - Clozapine
 - Alprazolam
 - Robaxin
 - Tapentadol
 - Acetaminophen and propoxyphene
 - Zolpidem
 - Diclofenac topical
 - Acetaminophen
Importance for Understanding Pain Mechanisms

- Allow for rational rather than empirical approach to pain control
- Foster the development of diagnostic tools to identify specific pain mechanisms
- Facilitate pharmacotherapies that act on specific pain pathways and mechanisms
- Reduce the number of pharmacotherapies and incidence of drug-related adverse events
- Enhances use of non-pharmacologic treatments
- Improve overall patient care and outcome

Summary

- Today’s clinicians must possess a working knowledge of the etiology and mechanisms of pain syndromes
 - Understanding pain mechanisms/pathophysiology is key to successful pain control
 - Reduce the number of medications and incidence of drug-related adverse events
 - Many therapeutic options are available
 - (non-pharmacological)
 - Tailoring treatment based on the individual patient and pain type can improve outcomes
 - Understanding how treatments affect functional clinical presentation and function
 - Do not forget to look for the spear